Phosphorus-carbon bond activation of PMe_{3} at a dimolybdenum center: synthesis and structure of $\left[\mathrm{Cp} * \mathrm{Mo}\left(\mu-\mathrm{O}_{2} \mathrm{CMe}\right)\right]_{2}\left(\mu-\mathrm{PMe}_{2}\right)(\mu-\mathrm{Me})$

Jun Ho Shin and Gerard Parkin*

Department of Chemistry, Columbia University, New York, New York 10027, USA

The reaction of $\mathrm{Mo}_{2}\left(\mu-\mathrm{O}_{2} \mathrm{CMe}\right)_{4}$ with $\mathrm{KCp} *$ in the presence of PMe_{3} yields $\left[\mathrm{Cp} * \mathrm{Mo}\left(\mu-\mathrm{O}_{2} \mathrm{CMe}\right)\right]_{2}\left(\mu-\mathrm{PMe}_{2}\right)(\mu-\mathrm{Me})$ as a result of cleavage of the $\mathrm{P}-\mathrm{CH}_{3}$ bond.

The quadruply bonded dimolybdenum acetato complex $\mathrm{Mo}_{2}(\mu-$ $\left.\mathrm{O}_{2} \mathrm{CMe}\right)_{4}$ has been shown to exhibit an extensive chemistry, allowing access to a large variety of mononuclear, dinuclear and polynuclear complexes. ${ }^{1}$ In this paper, we report an unusual reaction of $\mathrm{Mo}_{2}\left(\mu-\mathrm{O}_{2} \mathrm{CMe}\right)_{4}$ which results in $\mathrm{P}-\mathrm{C}$ bond activation of PMe_{3} at a dimolybdenum center.

As part of an effort to find new methods of synthesis for permethylcyclopentadienyl molybdenum complexes, ${ }^{2}$ we have studied the reaction of $\mathrm{Mo}_{2}\left(\mu-\mathrm{O}_{2} \mathrm{CMe}\right)_{4}$ with $\mathrm{KCp}{ }^{*}\left(\mathrm{Cp}^{*}=\right.$ $\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}$) in the presence of PMe_{3}. Interestingly, rather than yielding a 'molybdenocene' derivative, ${ }^{3}$ the bridging dimethyl-phosphido-methyl complex, $\quad\left[\mathrm{Cp} * \mathrm{Mo}\left(\mu-\mathrm{O}_{2} \mathrm{CMe}\right)\right]_{2}(\mu-$ $\left.\mathrm{PMe}_{2}\right)(\mu-\mathrm{Me})$, is obtained in $c a .30 \%$ isolated yield over a period of 3 days at room temperature (Scheme 1). The molecular structure of $\left[\mathrm{Cp} * \mathrm{Mo}\left(\mu-\mathrm{O}_{2} \mathrm{CMe}\right)\right]_{2}\left(\mu-\mathrm{PMe}_{2}\right)(\mu-\mathrm{Me})$ has been determined by X-ray diffraction (Fig. 1 and Table 1), ${ }^{4}$ thereby demonstrating that the $\mathrm{P}-\mathrm{CH}_{3}$ bond of PMe_{3} has been cleaved. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopic data also provide decisive evidence in accord with this formulation. For example, the ${ }^{1} \mathrm{H}$ NMR spectrum exhibits three doublets at $\delta 0.97\left({ }^{2} J_{\mathrm{PH}} 10\right.$ $\mathrm{Hz}), 0.91\left({ }^{2} J_{\mathrm{PH}} 9 \mathrm{~Hz}\right)$, and $-5.25\left({ }^{3} J_{\mathrm{PH}} 5 \mathrm{~Hz}\right)$ for the $\left[\mathrm{Mo}_{2}(\mu-\right.$ $\left.\left.\mathrm{PMe}_{2}\right)(\mu-\mathrm{Me})\right]$ moiety, with the lattermost resonance attributed to the molybdenum methyl group.

Scheme 1

Fig. 1 Molecular structure of $\left[\mathrm{Cp} * \mathrm{Mo}\left(\mu-\mathrm{O}_{2} \mathrm{CMe}\right)\right]_{2}\left(\mu-\mathrm{PMe}_{2}\right)(\mu-\mathrm{Me})$

Table 1 Selected bond lengths for $\left[\mathrm{Cp} * \mathrm{Mo}\left(\mu-\mathrm{O}_{2} \mathrm{CMe}\right)\right]_{2}\left(\mu-\mathrm{PMe}_{2}\right)(\mu-\mathrm{Me})$

X	$d[\mathrm{Mo}(1)-\mathrm{X}]^{a} / \AA$	$d[\mathrm{Mo}(2)-\mathrm{X}]^{b / \AA}$
$\mathrm{Mo}(x)$	$2.8447(5)$	$2.8447(5)$
$\mathrm{C}(1)$	$2.300(7)$	$2.301(7)$
P	$2.3883(13)$	$2.3853(13)$
$\mathrm{O}(1 y)$	$2.179(3)$	$2.161(3)$
$\mathrm{O}(2 y)$	$2.145(3)$	$2.152(3)$
$\mathrm{C}(z 1)$	$2.259(4)$	$2.251(5)$
$\mathrm{C}(z 2)$	$2.241(4)$	$2.253(4)$
$\mathrm{C}(z 3)$	$2.364(4)$	$2.371(4)$
$\mathrm{C}(z 4)$	$2.419(4)$	$2.421(5)$
$\mathrm{C}(z 5)$	$2.352(4)$	$2.327(5)$

${ }^{a} x=2, y=1, z=4{ }^{b} x=1, y=2, z=5$.
The facile cleavage of the $\mathrm{P}-\mathrm{CH}_{3}$ bond in the formation of $\left[\mathrm{Cp} * \mathrm{Mo}\left(\mu-\mathrm{O}_{2} \mathrm{CMe}\right)\right]_{2}\left(\mu-\mathrm{PMe}_{2}\right)(\mu-\mathrm{Me})$ is of interest not only because such transformations are rare,, 5 but also because the $\mathrm{P}-\mathrm{CH}_{3}$ bond cleavage in this system takes precedence over the much more ubiquitous $\mathrm{C}-\mathrm{H}$ bond cleavage reactions of $\mathrm{PMe}_{3} .{ }^{7}$ Furthermore, the structure of $\left[\mathrm{Cp} * \mathrm{Mo}\left(\mu-\mathrm{O}_{2} \mathrm{CMe}\right)\right]_{2}(\mu-$ $\left.\mathrm{PMe}_{2}\right)(\mu-\mathrm{Me})$ is noteworthy because both $\left[\mathrm{PMe}_{2}\right]$ and [Me] fragments remain coordinated to the metal centers after cleavage has taken place. We are aware of three other examples of $\mathrm{P}-\mathrm{CH}_{3}$ cleavage reactions of $\mathrm{PMe}_{3},{ }^{8-10}$ only one of which yields a product that contains both $\left[\mathrm{PMe}_{2}\right]$ and [Me] groups coordinated to a metal, namely the reaction of $\mathrm{CpNi}(\mu-\mathrm{H})(\mu-$ $\mathrm{CO}) \mathrm{WCp}_{2}$ with PMe_{3} to give $\mathrm{CpNi}\left(\mu-\mathrm{PMe}_{2}\right)(\mu-\mathrm{CO}) \mathrm{W}$ $\mathrm{CpMe}\left(\mathrm{PMe}_{3}\right) .{ }^{8}$
In addition to representing a noteworthy example of $\mathrm{P}-\mathrm{C}$ bond cleavage, $\left[\mathrm{Cp} * \mathrm{Mo}\left(\mu-\mathrm{O}_{2} \mathrm{CMe}\right)\right]_{2}\left(\mu-\mathrm{PMe}_{2}\right)(\mu-\mathrm{Me})$ is also of interest from a structural perspective since there are no examples of dimolybdenum complexes with bridging methyl groups listed in the Cambridge Structural Database. ${ }^{11,12}$ Bridging methyl groups have been proposed to adopt five different coordination modes (Scheme 2), which may be classified as (i) symmetric pyramidal, ${ }^{13}$ (ii) symmetric planar, ${ }^{14}$ (iii) monohapto agostic, ${ }^{15}$ (iv) dihapto agostic, ${ }^{16,17}$ and (v) trihapto agostic. ${ }^{17,18}$ Of these modes, the bridging methyl group in $\left[\mathrm{Cp} * \mathrm{Mo}\left(\mu-\mathrm{O}_{2} \mathrm{CMe}\right)\right]_{2}\left(\mu-\mathrm{PMe}_{2}\right)(\mu-\mathrm{Me})$ is appropriately described as symmetric pyramidal, with chemically equivalent Mo-C bond lengths [2.300(7) and 2.301(7) $\AA]^{19}$ and an acute Mo-C-Mo bond angle [76.4(2) ${ }^{\circ}$. ${ }^{20}$ The ${ }^{1} J_{\mathrm{CH}}$ coupling constant associated with this methyl group is 113 Hz , less than that for

(i)

(ii)

(iii)

(iv)

(v)

Scheme 2
typical terminal molybdenum methyl groups (ca. 127-136 $\mathrm{Hz},{ }^{21}$ and possibly reflects a diminished s-contribution to the $\mathrm{C}-\mathrm{H}$ bond, ${ }^{22}$ rather than an agostic interaction. ${ }^{20}$

The Mo-Mo separation of $2.8447(5) \AA$ in $[\mathrm{Cp} * \mathrm{Mo}(\mu-$ $\left.\left.\mathrm{O}_{2} \mathrm{CMe}\right)\right]_{2}\left(\mu-\mathrm{PMe}_{2}\right)(\mu-\mathrm{Me})$ is consistent with the presence of a direct Mo-Mo interaction. ${ }^{23}$ In this regard, the Mo-Mo separation is longer than the values in complexes with formal double bonds, e.g. $\left[\mathrm{CpMo}_{2}(\mu-\mathrm{S})_{2}\left(\mu-\mathrm{SPr}^{1}\right)\left(\mu-\mathrm{PPh}_{2}\right)[2.623(2)\right.$ $\AA]^{24} \quad$ and $\quad\left[\left(\mathrm{C}_{5} \mathrm{Me}_{4} \mathrm{H}\right) \mathrm{Mo}(\mathrm{CO})\right]\left(\mu-\mathrm{PPh}_{2}\right)_{2}\left[\mathrm{Mo}(\mathrm{CO})\left(\mathrm{C}_{5} \mathrm{Me}_{4}{ }^{-}\right.\right.$ $\left.\left.\mathrm{P}(\mathrm{O}) \mathrm{Ph}_{2}\right)\right]\left[2.744(1) \AA\right.$ § , ${ }^{25}$ and notably shorter than the values in other phosphido bridged complexes such as $\left[\mathrm{CpMo}(\mathrm{CO})_{2}\right]_{2}(\mu$ -$\left.\mathrm{PMe}_{2}\right)(\mu-\mathrm{H}) \quad[3.262(7) \AA]_{,}^{26} \quad\left[\mathrm{CpMo}(\mathrm{CO})_{2}\right]_{2}\left(\mu-\mathrm{PBut}_{2}\right)(\mu-\mathrm{H})$ $[3.247(1) \AA],{ }^{27}$ and $\left[\mathrm{CpMo}(\mathrm{CO})_{2}\right]_{2}\left(\mu-\mathrm{PPh}_{2}\right)(\mu-\mathrm{H}) \quad[3.244(1)$ A]..28,29 Furthermore, the length of the Mo-Mo bond in $\left[\mathrm{Cp} * \mathrm{Mo}\left(\mu-\mathrm{O}_{2} \mathrm{CMe}\right)\right]_{2}\left(\mu-\mathrm{PMe}_{2}\right)(\mu-\mathrm{Me})$ is marginally longer than the W-W separation of $2.78 \AA$ in Chisholm's closely related tungsten complex, $\mathrm{Cp}_{2} \mathrm{~W}_{2}\left(\mu-\eta^{2}-\mathrm{O}_{2} \mathrm{CEt}\right)_{2}\left(\mu-\eta^{1}-\right.$ $\left.\mathrm{O}_{2} \mathrm{CEt}\right)\left(\mu-\mathrm{NMe}_{2}\right)$, which has been assigned to a single bond. ${ }^{30}$
In summary, the reaction of $\mathrm{Mo}_{2}\left(\mu-\mathrm{O}_{2} \mathrm{CMe}\right)_{4}$ with $\mathrm{KCp} *$ in the presence of PMe_{3} yields $\left[\mathrm{Cp} * \mathrm{Mo}\left(\mu-\mathrm{O}_{2} \mathrm{CMe}\right)\right]_{2}\left(\mu-\mathrm{PMe}_{2}\right)(\mu-$ $\mathrm{Me})$, the formation of which involves a novel $\mathrm{P}-\mathrm{CH}_{3}$ cleavage reaction of PMe_{3}.

We thank the US Department of Energy, Office of Basic Energy Sciences (\#DE-FG02-93ER14339) for support of this research. G. P. is the recipient of a Presidential Faculty Fellowship Award (1992-1997).

Notes and References

\dagger E-mail: parkin@ chem.columbia.edu
1 Multiple Bonds Between Metal Atoms, ed. F. A. Cotton and R. A. Walton, Clarendon Press, Oxford, 2nd edn., 1993.
2 See, for example: J. H. Shin and G. Parkin, Polyhedron, 1994, 13, 1489.

3 For example, $\mathrm{Mo}_{2}\left(\mu-\mathrm{O}_{2} \mathrm{CMe}\right)_{4}$ reacts with NaCp to yield 'molybdenocene' derivatives. ${ }^{3 a, b}$ Furthermore, a pentalene complex has been obtained from the reaction of $\mathrm{Mo}_{2}\left(\mu-\mathrm{O}_{2} \mathrm{CMe}\right)_{4}$ with $\mathrm{K}_{2}\left[\mathrm{C}_{8} \mathrm{H}_{4}(1,4-\right.$ $\left.\mathrm{SiPr}^{\mathrm{i}}{ }_{3}\right)_{2}$. ${ }^{3 c}$ (a) J. C. Smart and C. J. Curtis, Inorg. Chem., 1978, 17, 3290; (b) J. Bashkin, M. L. H. Green, M. L. Poveda and K. Prout, J. Chem. Soc., Dalton Trans., 1982, 2485; (c) M. C. Kuchta, F. G. N. Cloke and P. B. Hitchcock, Organometallics, 1998, 17, 934.
$4\left[\mathrm{Cp} * \mathrm{Mo}\left(\mu-\mathrm{O}_{2} \mathrm{CMe}\right)\right]_{2}\left(\mu-\mathrm{PMe}_{2}\right)(\mu-\mathrm{Me})$ is monoclinic, $P 2_{1} / n$ (no. 14$), a$ $=10.989(1), b=14.0436(9), c=18.844(2) \AA, \beta=90.353(9)^{\circ}, U=$ 2908(1) $\AA^{3}, Z=4, T=$ room temp., $R_{1}=0.0404[I>2 \sigma(I)]$. The hydrogen atoms of the bridging methyl group were located and refined isotropically, giving the following bond lengths (\AA) : $\mathrm{C} 1-\mathrm{H} 1 \mathrm{a} 0.86$, C1-H1b 0.97, C1-H1c 0.84 Å. CCDC 182/868.
5 P. E. Garrou, Chem. Rev., 1985, 85, 171; M. Michman, Isr. J. Chem., 1986, 27, 241.
6 In contrast to $\mathrm{P}-\mathrm{C}$ cleavage in alkylphosphines, the cleavage of $\mathrm{P}-\mathrm{C}$ bonds in arylphosphines is common, with the ease of cleavage typically following the order $\mathrm{P}-\mathrm{C}_{\mathrm{sp}} 3<\mathrm{P}-\mathrm{C}_{\mathrm{sp} 2}<\mathrm{P}-\mathrm{C}_{\mathrm{sp} .}{ }^{5}$ The majority of examples of $\mathrm{P}-\mathrm{C}_{\mathrm{sp}^{3}}$ bond cleavage, however, involve degradation of bidentate phosphine ligands. ${ }^{6 a-e}(a)$ V. Riere, M. A. Ruiz, F. Villafañe, C. Bois and Y. Jeannin, J. Organomet. Chem., 1989, 375, C23; (b) I. J. B. Lin, J. S. Lai and C. W. Liu, Organometallics, 1990, 9, 530; (c) K.-B. Shiu, S.-W. Jean, H.-J. Wang, S.-L. Wang, F.-L. Liao, J.-C. Wang and L.-S. Liou, Organometallics, 1997, 16, 114 and references therein; (d) N. M. Doherty, G. Hogarth, S. A. R. Knox, K. A. Macpherson, F. Melchior, D. A. V. Morton and A. G. Orpen, Inorg. Chim. Acta, 1992, 198-200, 257; (e) F. A. Cotton, J. A. M. Canich, R. L. Luck and K. Vidyasagar, Organometallics, 1991, 10, 352.
7 See, for example: F. A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, Wiley, 1988, 5th edn., p. 1217; A. D. Ryabov, Chem. Rev., 1990, 90, 403; A. E. Shilov and G. B. Shul'pin, Chem. Rev., 1997, 97, 2879.

8 T. Nakajima, I. Shimizu, K. Kobayashi, H. Koshino and Y. Wakatsuki, Inorg. Chem., 1997, 36, 6440.
9 W. Lin, S. R. Wilson and G. S. Girolami, Inorg. Chem., 1994, 33, 2265.

10 J. F. Hartwig, R. G. Bergman and R. A. Andersen, J. Organomet. Chem., 1990, 394, 417.
11 CSD Version 5.14. 3D Search and Research Using the Cambridge Structural Database, F. H. Allen and O. Kennard, Chem. Des. Automat. News, 1993, 8(1), 1 and 31.

12 It is also noteworthy that the Cp^{*} ligands of $\left[\mathrm{Cp} * \mathrm{Mo}\left(\mu-\mathrm{O}_{2} \mathrm{CMe}\right)\right]_{2}(\mu-$ $\left.\mathrm{PMe}_{2}\right)(\mu-\mathrm{Me})$ are not coordinated in a symmetric η^{5}-fashion, with MoC bond lengths that range from 2.24 to $2.42 \AA$ (see Table 1).
13 Representative examples include $\left[\mathrm{Me}_{2} \mathrm{Al}(\mu-\mathrm{Me})\right]_{2},{ }^{13 a} \quad[\mathrm{Cp} * \mathrm{CrMe}(\mu-$ $\mathrm{Me})]_{2},{ }^{13 b}\left\{\left[\mathrm{Cp}^{\mathrm{R}}\right]_{2} \mathrm{M}(\mu-\mathrm{Me})\right\}_{2}(\mathrm{M}=\mathrm{Ce}, \mathrm{Yb}, \mathrm{Y})^{13 c}$ and $\left\{\mathrm{Me}_{3} \mathrm{Al}-\right.$ $\left.\left[\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{2} \mathrm{~N}\right] \mathrm{Mn}(\mu-\mathrm{Me})\right\}_{2 .}{ }^{13 d}$ (a) J. C. Huffman and W. E. Streib, Chem. Commun., 1971, 911; (b) S. K. Noh, S. C. Sendlinger, C. Janiak and K. H. Theopold, J. Am. Chem. Soc., 1989, 111, 9127; (c) S. D. Stults, R. A. Andersen and A. Zalkin, J. Organomet. Chem., 1993, 462, 175 and references therein; (d) M. Niemeyer and P. P. Power, Chem. Commun., 1996, 1573.
14 For example, $\left[\mathrm{Cp}_{2} \mathrm{Zr}\left(\eta^{2}-\mathrm{OCMe}_{2}\right)\right]_{2}\left(\mu-\mathrm{AlMe}_{2}\right)(\mu-\mathrm{Me}),{ }^{14 a} \mathrm{Cp}^{*}{ }_{2} \mathrm{Lu}(\mu-$ $\mathrm{Me}) \mathrm{LuMeCp}{ }_{2},{ }^{14 b} \mathrm{Cp}^{*}{ }_{2} \mathrm{M}\left[(\mu-\mathrm{Me}) \mathrm{M}^{\prime} \mathrm{Me}_{2}(\mu-\mathrm{Me})\right]_{2} \mathrm{MCp}^{*}{ }_{2}(\mathrm{M}=\mathrm{Y}, \mathrm{Lu} ;$ $\left.\mathrm{M}^{\prime}=\mathrm{Al}, \mathrm{Ga}\right),{ }^{14 c} \mathrm{Cp}^{*}{ }_{2} \mathrm{Sm}\left[(\mu-\mathrm{Me}) \mathrm{AlMe}_{2}(\mu-\mathrm{Me})\right]_{2} \mathrm{SmCp}^{*}{ }_{2}{ }^{14 d}$ and $\left[\left(\mathrm{Cp}^{\mathrm{Me}}\right)_{3} \mathrm{U}\right]_{2}(\mu-\mathrm{Me}) .{ }^{14 e}$ (a) R. W. Waymouth, K. S. Potter, W. P. Schaefer and R. H. Grubbs, Organometallics, 1990, 9, 2843 and references therein; (b) P. L. Watson, J. Am. Chem. Soc., 1983, 105, 6491; (c) M. A. Busch, R. Harlow and P. L. Watson, Inorg. Chim. Acta, 1987, 140, 15; (d) W. J. Evans, L. R. Chamberlain, T. A. Ulibarri and J. W. Ziller, J. Am. Chem. Soc., 1988, 110, 6423; (e) S. D. Stults, R. A. Andersen and A. Zalkin, J. Am. Chem. Soc., 1989, 111, 4507 and references therein.
15 For examples, and for a discussion of the factors responsible for the bridging methyl group in $\left[\{\mathrm{Cp}(\mathrm{CO}) \mathrm{Fe}\}_{2}(\mu-\mathrm{CO})(\mu-\mathrm{Me})\right]^{+}$adopting a monohapto agostic interaction, see: B. E. Bursten and R. H. Cayton, Organometallics, 1986, 5, 1051 and references therein.
16 For example, $\mathrm{Cp}^{*}{ }_{2} \mathrm{Yb}(\mu-\mathrm{Me})_{2} \operatorname{Pt}(\text { dippe })^{16 a}$ and $\left[\mathrm{CpV}\left(\mathrm{NC}_{6} \mathrm{H}_{3} \operatorname{Pr}^{\mathrm{i}}{ }_{2}\right)(\mu-\right.$ $\left.\mathrm{Me})_{2}\right]_{2}(\mu-\mathrm{Mg}) .^{16 b}$ (a) D. J. Schwartz, G. E. Ball and R. A. Andersen, J. Am. Chem. Soc., 1995, 117, 6027; (b) M. C. W. Chan, J. M. Cole, V. C. Gibson and J. A. K. Howard, Chem. Commun., 1997, 2345.

17 [LiBMe_{4}] exhibits both dihapto and trihapto bridging methyl interactions. See: W. E. Rhine, G. Stucky and S. W. Peterson, J. Am. Chem. Soc., 1975, 97, 6401.
18 For example, $\mathrm{Cp}_{2} \mathrm{Y}^{\mathrm{Yb}}(\mu-\mathrm{Me}) \mathrm{BeCp}$ *. See: C. J. Burns and R. A. Andersen, J. Am. Chem. Soc., 1987, 109, 5853.
19 For comparison, the mean length for terminal $\mathrm{Mo}-\mathrm{CH}_{3}$ interactions listed in the Cambridge Structural Database is $2.23 \AA$, with a range of 2.03-2.40 Å.

20 Although a short Mo $\cdots \mathrm{H}$ separation of $2.02 \AA$ suggests that some monohapto agostic character to the interaction could be considered, we feel that the equivalence of the Mo-C bond lengths and the acute Mo-C-Mo bond angle is a more important indicator of the type of bridge [see, for example ref. 13(c)].
21 For example, $\left(\mathrm{Cp}^{\mathrm{But}}\right)_{2} \mathrm{MoMe}_{2}(128 \mathrm{~Hz}),{ }^{21 a}\left[\left(\mathrm{Cp}^{\mathrm{But}}\right)_{2} \mathrm{Mo}(\mathrm{CO}) \mathrm{Me}\right][\mathrm{I}]$ $(136 \mathrm{~Hz}),{ }^{21 a}\left[\left(\mathrm{Cp}^{\mathrm{But}}\right)_{2} \mathrm{Mo}\left(\mathrm{PMe}_{3}\right) \mathrm{Me}\right][\mathrm{I}](130 \mathrm{~Hz}),{ }^{21 a}$ and $\mathrm{Cp} * \mathrm{Mo}-$ (NO) $)_{2} \mathrm{Me}(127 \mathrm{~Hz}) .{ }^{21 b}$ (a) J. H. Shin and G. Parkin, unpublished work; (b) W. L. Elcesser, M. Sörlie and J. L. Hubbard, Organometallics, 1996, 15, 2534.
$22{ }^{1} J_{\mathrm{CH}}$ coupling constants for hydrocarbons correlate with the hybridization $\left(\mathrm{sp}^{n}\right)$ of the bonding orbital according to the relationship ${ }^{1} J_{\mathrm{CH}}=$ $500(1 / 1+n)$. See: (a) H. S. Gutowsky and C. S. Juan, J. Am. Chem. Soc., 1962, 84, 307; (b) N. Muller and D. E. Pritchard, J. Chem. Phys., 1959, 31, 1471.
23 Considering a bridging methyl group as a L- $\mu-\mathrm{X}$ ligand, ${ }^{23 a}$ the $\mathrm{Mo}-\mathrm{Mo}$ interaction may be described as a formal single bond. Alternatively, the interaction may be described as a formal double bond if an electron counting procedure ${ }^{23 b}$ that does not explicitly consider the 3-center-2-electron nature of the Mo-Me-Mo fragment is used. (a) M. L. H. Green, J. Organomet. Chem., 1995, 500, 127; (b) J. P. Collman, L. S. Hegedus, J. R. Norton and R. G. Finke, Principles and Applications of Organotransition Metal Chemistry, University Science Books, Mill Valley, CA, 1987.
24 H. Adams, N. A. Bailey, A. P. Bisson and M. J. Morris, J. Organomet. Chem., 1993, 444, C34.
25 W.-K. Wong, F. L. Chow, H. Chen, B. W. Au-Yeung, R.-J. Wang and T. C. W. Mak, Polyhedron, 1990, 9, 2901.

26 R. J. Doedens and L. F. Dahl, J. Am. Chem. Soc., 1965, 87, 2576.
27 R. A. Jones, S. T. Schwab, A. L. Stuart, B. R. Whittlesey and T. C. Wright, Polyhedron, 1985, 4, 1689.
28 H. Hartung, B. Walther, U. Baumeister, H.-C. Böttcher, A. Krug, F. Rosche and P. G. Jones, Polyhedron, 1992, 11, 1563.
29 For further comparison, the unbridged Mo-Mo single bond length in $\left[\mathrm{CpMo}(\mathrm{CO})_{3}\right]_{2}$ is $3.235(1) \AA$. See: R. D. Adams, D. M. Collins and F. A. Cotton, Inorg. Chem., 1974, 13, 1086.

30 M. H. Chisholm, M. J. Hampden-Smith, J. C. Huffman, J. D. Martin, K. A. Stahl and K. G. Moodley, Polyhedron, 1988, 7, 1991.

Received in Bloomington, IN, USA, 5th March 1998; 8/01835I

