Synthesis, molecular structure, and reactivity of an $\mathrm{Li}_{2} \mathrm{Br}_{4}$ octahedrally stabilized organoaluminium bromide dimer

Xiao-Wang Li, Jianrui Su and Gregory H. Robinson*
Department of Chemistry, The University of Georgia, Athens, GA 30602-2556, USA

The synthesis, molecular structure, and reactivity of an unusual $\mathrm{Li}_{2} \mathrm{Br}_{4}$ octahedrally stabilized organoaluminium bromide dimer, $\left[\left(\mathrm{Mes}_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right) \mathrm{AlBr}_{3} \mathrm{Li}\right]_{2}$, is described.

Utilization of the sterically demanding 2,6-dimesitylphenyl ligand, $\left(\mathrm{Mes}_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right)$, with group 13 elements has afforded a number of interesting compounds in recent years. Monomeric compounds of boron, $\left(\mathrm{Mes}_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right) \mathrm{BBr}_{2},{ }^{1}$ gallium, $\left(\mathrm{Mes}_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right)_{2} \mathrm{GaX}\left(\mathrm{X}=\mathrm{Cl}^{2}{ }^{2} \mathrm{Br}^{3}\right)$, and indium (Mes ${ }_{2}$ $\left.\mathrm{C}_{6} \mathrm{H}_{3}\right)_{2} \mathrm{InBr},{ }^{4}$ have been reported. Gallium and indium dimers such as $\left[\left(\mathrm{Mes}_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right) \mathrm{GaCl}_{2}\right]_{2}$ and $\left[\left(\mathrm{Mes}_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right) \mathrm{InCl}_{2}\right]_{2}{ }^{5}$ have also been prepared. It is particularly significant that this ligand system has been shown to stabilize cyclogallenes, organometallic 2π-electron aromatic moieties, $\mathrm{M}_{2}\left[\left(\mathrm{Mes}_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right) \mathrm{Ga}\right]_{3}{ }^{6-9}$ ($M=N a, K$). In notable contrast, the corresponding organoaluminium chemistry of this ligand has proven considerably less fruitful. Reaction of $\mathrm{Me}_{3} \mathrm{SiCl}$ with $\left[\left(\mathrm{Mes}_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right) \mathrm{AlH}_{3} \cdot \mathrm{LiOEt}_{2}\right]_{n}$ gives $\left(\mathrm{Mes}_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right) \mathrm{AlCl}_{2} . \mathrm{OEt}_{2} .{ }^{10}$ Herein we report the synthesis, \dagger molecular structure, and reactivity of the $\mathrm{Li}_{2} \mathrm{Br}_{4}$ octahedrally stabilized aluminium bromide dimer $\left[\left(\mathrm{Mes}_{2}{ }^{-}\right.\right.$ $\left.\left.\mathrm{C}_{6} \mathrm{H}_{3}\right) \mathrm{AlBr}_{3} \mathrm{Li}\right]_{2} \mathbf{1}$. Reaction of $\mathbf{1}$ with lithium 2,6-diisopropylphenylamide, $\mathrm{Li}\left[\mathrm{N}(\mathrm{H})\left(\operatorname{Pr}^{\mathrm{i}}{ }_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right)\right]$, affords $\left(\mathrm{Mes}_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right) \mathrm{Al}-$ $\left[\mathrm{N}(\mathrm{H})\left(\operatorname{Pr}^{\mathrm{i}} \mathrm{C}_{6} \mathrm{H}_{3}\right)\right]_{2}, 2$.

The structure of $\mathbf{1}$ (Fig. 1) \ddagger which resides about a center of symmetry, may be described as an $\mathrm{Li}_{2} \mathrm{Br}_{4}$ octahedrally stabilized aluminium bromide dimer. The $\mathrm{Li}_{2} \mathrm{Br}_{4}$ octahedron is facilitated by the displacement of the lithium atoms from the ipso-carbon atoms of the ligands by AlBr_{3} moieties. $\mathbf{1}$ is easily compared with the unsolvated (2,6 -dimesitylphenyl)lithium dimer, $\left[\left(\mathrm{Mes}_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right) \mathrm{Li}\right]_{2} .{ }^{11}$ Perhaps most interesting is the differences in lithium coordination of $\mathbf{1}$ compared to that of $\left[\left(\mathrm{Mes}_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right) \mathrm{Li}\right]_{2}$. In $\left.\left[\mathrm{Mes}_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right) \mathrm{Li}\right]_{2}$ the primary interaction between the lithium and the ligand involves the ipso-carbon

Fig. 1 Molecular structure of $\left[\left(\mathrm{Mes}_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right) \mathrm{AlBr}_{3} \mathrm{Li}\right]_{2}$ 1. Selected bond distances (\AA) and angles $\left({ }^{\circ}\right): \mathrm{Al}(1)-\mathrm{C}(1) 1.96(2), \mathrm{Al}(1)-\mathrm{Br}(1) 2.359(5)$, $\mathrm{Al}(1)-\mathrm{Br}(2) 2.285(6), \mathrm{Al}(1)-\mathrm{Br}(3) 2.398(5), \operatorname{Br}(1)-\mathrm{Li}(1 \mathrm{~A}) 2.67(3), \operatorname{Br}(3)-$ $\mathrm{Li}(1)$ 2.52(3), $\mathrm{Br}(3)-\mathrm{Li}(1 \mathrm{~A}) 2.80(3), \mathrm{Li}(1)-\operatorname{Li}(1 \mathrm{~A}) 3.41(5), \mathrm{Li}(1)-\mathrm{C}(7)$ $2.70(3), \mathrm{Li}(1)-\mathrm{C}(8) 2.70(3), \mathrm{Li}(1)-\mathrm{C}(9) 2.51(3), \mathrm{Li}(1)-\mathrm{C}(10) 2.43(3)$, $\mathrm{Li}(1)-\mathrm{C}(11) 2.38(4), \mathrm{Li}(1)-\mathrm{C}(12) 2.55(4), \mathrm{C}(1)-\mathrm{Al}(1)-\mathrm{Br}(1)$ 111.1(5), $\mathrm{C}(1)-\mathrm{Al}(1)-\mathrm{Br}(2) 122.2(5), \mathrm{C}(1)-\mathrm{Al}(1)-\mathrm{Br}(3) 115.5(5), \mathrm{Br}(2)-\mathrm{Al}(1)-\mathrm{Br}(1)$ 106.2(2), $\mathrm{Br}(2)-\mathrm{Al}(1)-\mathrm{Br}(3) 99.0(2), \mathrm{Br}(1)-\mathrm{Al}(1)-\mathrm{Br}(3) 100.0(2), \mathrm{Al}(1)-$ $\mathrm{Br}(1)-\mathrm{Li}(1 \mathrm{~A}) 88.5(7), \mathrm{Al}(1)-\mathrm{Br}(3)-\mathrm{Li}(1) 106,1(8), \mathrm{Al}(1)-\mathrm{Br}(3)-\mathrm{Li}(1 \mathrm{~A})$ 84.9(7), $\mathrm{Li}(1)-\operatorname{Br}(3)-\operatorname{Li}(1 \mathrm{~A}) 79.6(9)$.
atoms. The Li-C $\mathrm{C}_{i p s o}$ bond distances are 2.17(1) and 2.16(1) \AA while the secondary lithium-carbon interactions (with the ipsocarbon atoms of the o-mesityl substituents) range from 2.51(1) to 2.56 A . In striking contrast from $\left[\left(\mathrm{Mes}_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right) \mathrm{Li}\right]_{2}$, the lithium atoms in $\mathbf{1}$ only interact with the 2,6-dimesitylphenyl ligand in an η^{6}-aryl ring fashion with lithium-carbon contacts ranging from $2.38(4)$ to $2.70(4) \AA$. In addition to the $\mathrm{Li}-$ (η^{6}-aryl) ring interaction, and quite unlike other reported lithium aryls, the core $\mathbf{1}$ is further stabilized by weak lithiumbromine contacts: 2.52(2), 2.67(3) and 2.80(3) A. These distances are considerably longer than the corresponding value reported for gaseous $\operatorname{LiBr}(2.35 \AA) .{ }^{12}$ Furthermore, the $\mathrm{Li} \cdots \mathrm{Li}$ separation in $\mathbf{1}$ of $3.45(6) \AA$ is considerably longer than the values reported for $\left[\left(\mathrm{Mes}_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right) \mathrm{Li}\right]_{2}(2.31,2.27 \AA)$. The environment about the aluminium atom may be described as distorted tetrahedral with bond angles ranging from $99.0(5)$ to $122.5(5)^{\circ}$. The Al-C bond distance in $\mathbf{1}$ of $1.96(2) \AA$ compares well with other four-coordinate aluminium compounds. The Al- Br bond distances, 2.359(5), 2.285(6) and 2.398(5) A., for $\mathrm{Al}-\mathrm{Br}(1), \mathrm{Al}-\mathrm{Br}(2)$ and $\mathrm{Al}-\mathrm{Br}(3)$, respectively, are comparable to other reported $\mathrm{Al}-\mathrm{Br}$ distances. ${ }^{13-15}$

The unusual structure of $\mathbf{1}$ underscores the often substantial differences in chemical behavior of organoaluminium moieties relative to other group 13 congeners. However, it is interesting that reaction of 1 with $\mathrm{Li}\left[\mathrm{N}(\mathrm{H})\left(\operatorname{Pri}_{2}{ }_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right)\right]$ proceeds in an expected manner affording $\mathbf{2}$. The aluminium atom in $\mathbf{2}$ assumes a trigonal planar geometry [bond angles about Al: 127.3(5), $116.4(2)$ and $116.4(2)^{\circ}$ (Fig. 2) with generally unremarkable $\mathrm{Al}-\mathrm{Cl}[1.978(11) \mathrm{A}]$ and Al-N [1.788(6) A] bond distances. The $\mathrm{Al}-\mathrm{N}$ bond distance in $\mathbf{2}$ is quite comparable to values reported for $\left[\mathrm{CpAl}-\mathrm{N}\left(\operatorname{Pr}^{2} \mathrm{C}_{6} \mathrm{H}_{3}\right)\right]_{2}[1.796(2) \text { and } 1.811(3) \AA]^{16}$ while these are much shorter than the distances reported for $\left[\left(\mathrm{Me}_{3} \mathrm{CCH}_{2}\right)_{2} \mathrm{Al}-\mathrm{N}(\mathrm{H})\left(\operatorname{Pr}_{2}{ }_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right)\right]_{2} \quad[2.013(5)$ and 2.007(5) $\AA] .{ }^{17} 2$ contains a mirror plane which bisects the $\mathrm{N}-\mathrm{Al}-\mathrm{N}$ bond

Fig. 2 Molecular structure of $\left(\mathrm{Mes}_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right) \mathrm{Al}\left[\mathrm{N}(\mathrm{H})\left(\operatorname{Pr}^{\mathrm{i}}{ }_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right)_{3}\right.$ 2. Selected bond distances (\AA) and angles $\left({ }^{\circ}\right): \mathrm{Al}(1)-\mathrm{C}(1) 1.978(11), \mathrm{Al}(1)-\mathrm{N}(1)$ 1.788(6), $\mathrm{N}(1)-\mathrm{C}(14) 1.436(10) ; \mathrm{N}(1)-\mathrm{Al}(1)-\mathrm{C}(1) 116.4(2), \mathrm{N}(1)-\mathrm{Al}(1)-$ $\mathrm{N}(1 \mathrm{~A})$ 127.3(5), $\mathrm{C}(14)-\mathrm{N}-\mathrm{Al}(1)$ 138.1(6).
angle while containing atoms $\mathrm{Al}, \mathrm{C}(1)$ and $\mathrm{C}(4)$. The central phenyl ring of the ligand resides at an angle of 63.2° relative to the aluminium trigonal plane $[\mathrm{C}-\mathrm{Al}(\mathrm{N})-\mathrm{N}]$. Indeed, significant π-bonding would appear to be precluded in 2 by the fact that both nitrogen trigonals $[\mathrm{C}-\mathrm{N}(\mathrm{H})-\mathrm{Al}]$ are twisted at an angle of 23.1° relative to the aluminium trigonal plane.
The formation of $\mathbf{2}$ suggests that $\mathbf{1}$ may be utilized in a variety of reactions as a means to approach other interesting derivatives.

Notes and References

\dagger Synthesis: 1 a solution of $\left(\mathrm{Mes}_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right) \mathrm{Li}(0.80 \mathrm{~g}, 2.5 \mathrm{mmol})$ in diethyl ether (40 ml) was added over a period of 10 min to an ether (30 ml) solution of $\mathrm{AlBr}_{3}(0.67 \mathrm{~g}, 2.5 \mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$. The reaction mixture was stirred for 3 h and allowed to warm to room temp. over a period of 2 h . The resulting solution became yellow and was stirred for additional 30 h . After filtration, the solution was concentrated. Cooling this solution to $-25^{\circ} \mathrm{C}$ for several days afforded $1(0.78 \mathrm{~g})$ as colorless crystals. Yield: 53%, mp $67{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, 298 \mathrm{~K},\left[{ }^{2} \mathrm{H}_{8}\right] \mathrm{THF}$): $\delta 1.92$ (s, $12 \mathrm{H}, o^{\prime}-\mathrm{CH}_{3}$), 1.98 , (s , 12 $\left.\mathrm{H}, o^{\prime}-\mathrm{CH}_{3}\right), 2.13\left(\mathrm{~s}, 6 \mathrm{H}, p^{\prime}-\mathrm{CH}_{3}\right), 2.17,\left(\mathrm{~s}, 6 \mathrm{H}, p^{\prime}-\mathrm{CH}_{3}\right), 6.65-6.73[\mathrm{~m}, 6 \mathrm{H}$, CH (aromatic)], 6.76 [s, $8 \mathrm{H}, m^{\prime}$-CH (aromatic)]. ${ }^{13} \mathrm{C}$ NMR ($300 \mathrm{MHz}, 298$ K, $\left[{ }^{2} \mathrm{H}_{8}\right]$ THF): $\delta 19.91,20.06,20.48,20.62$, 20.81 (methyl C); 125.90, $126.32,126.68,126.86-134.02,139.23,142.12,145.98$ (aromatic C).
2: an ether $(50 \mathrm{ml})$ solution of $\mathrm{Li}\left[\mathrm{N}(\mathrm{H})\left(\operatorname{Pr}^{\mathrm{i}} \mathrm{C}_{6} \mathrm{H}_{3}\right)\right](0.22 \mathrm{~g}, 1.5 \mathrm{mmol})$, prepared from $\left(\operatorname{Pr}_{2}{ }_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right) \mathrm{NH}_{2}$ and $n-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Li}$, at $0{ }^{\circ} \mathrm{C}$ in ether, was slowly added to an ether $(30 \mathrm{ml})$ solution of $\mathbf{1}(0.42 \mathrm{~g}, 0.70 \mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$. The reaction mixture was stirred for 3 h and allowed to warm to room temp. over a period of 2 h , and stirred for additional 30 h . After filtration, the solvent of the yellow solution was evaporated in vacuo. The residue was extracted with hexane $(50 \mathrm{ml})$. The volume of the solution was reduced in vacuo to $c a$. 15 ml . Cooling the concentrated solution at $-25^{\circ} \mathrm{C}$ for a week afforded colorless needle crystals of 2. X-Ray quality crystals were grown from diethyl ether-hexane (1:1). Yield: 78%. mp. $154{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.298 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{8}\right): \delta 1.07$ [d, $\left.12 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 1.2\left[\mathrm{~d}, 12 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 1.90$ ($\mathrm{s}, 6 \mathrm{H}, o^{\prime}-\mathrm{CH}_{3}$), $1.93\left(\mathrm{~s}, 6 \mathrm{H}, o^{\prime}-\mathrm{CH}_{3}\right), 2.04\left(\mathrm{~s}, 3 \mathrm{H}, p^{\prime}-\mathrm{CH}_{3}\right), 2.08(\mathrm{~s}, 3 \mathrm{H}$, $\left.p^{\prime}-\mathrm{CH}_{3}\right), 3.24-3.29,\left[\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 4.39(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}), 6.63-6.69[\mathrm{~m}$, $12 \mathrm{H}, \mathrm{CH}$ (aromatic)], $6.71-6.73$ [m, $4 \mathrm{H}, m^{\prime}-\mathrm{CH}$ (aromatic)]. ${ }^{13} \mathrm{C}$ NMR ($300 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{8}$): $\delta 8.18,8.26,16.38,18.10,18.38,18.65,19.91$, 20.17 (alkyl C), 123.20, 123.42, 124.09, 124.75, 124.98-141.2, 142.87, 144.50, 145.96 (aromatic C).
\ddagger Crystallographic data for $\mathbf{1}$ and 2: colorless cubic crystals of $\mathbf{1}(0.2 \times 0.1$ $\times 0.1 \mathrm{~mm})$ and $2(0.2 \times 0.2 \times 0.1 \mathrm{~mm})$ were mounted in glass capillaries under an atmosphere of N_{2} in a drybox. Single crystal X-ray intensity data were collected on a Siemens P4 diffractometer ($50 \mathrm{kV} / 40 \mathrm{~mA}$), with graphite-monochromated $\mathrm{Mo}-\mathrm{K} \alpha$ radiation $(\lambda=0.71073 \AA)$ at $21^{\circ} \mathrm{C}$, using the ω scan technique to a maximum 2θ value of 45°. Cell parameters and an orientation matrix for data collection were obtained from a leastsquares analysis of the setting of up to 30 carefully centered reflections in the range $15.0^{\circ}<2 \theta<30.0^{\circ}$. Absorption corrections were carried out using the empirical ψ-scan method. The structures were solved by direct methods using the SHELXTL 5.0^{18} software package. All non-hydrogen atoms were refined using anisotropic thermal parameters. Hydrogen atoms
were placed at ideal positions riding on the attached carbon and nitrogen atoms without further refinement.

Crystal data: 1: $a=9.982(8), b=10.179(2), c=12.948(3) \AA, \alpha=$ $95.30(2), \beta=94.90(4), \gamma=107.70(2)^{\circ}, V=1239.0(11) \AA^{3}, D_{\mathrm{c}}=1.574$ $\mathrm{g} \mathrm{cm}^{-3}, Z=1$ for triclinic space group $P \overline{1}$. Refinement converged at $R 1=$ $0.070, w R 2=0.20$ using the F^{2} refinement for 2150 observed reflections. Data collection and refinement for $\mathbf{2}$ proceeded in a fashion similar to that described for 1 .
2: $a=24.604(14), b=10.312(5), c=18.173(8) \AA, \beta=115.50(5)^{\circ}, V$ $=4161.8(34) \AA^{3}, D_{\mathrm{c}}=1.106 \mathrm{~g} \mathrm{~cm}^{-3}, Z=4$ for monoclinic space group $C 2 / c$. Refinement converged at $R 1=0.097, w R 2=0.23$ using the F^{2} refinement for 1449 observed reflections. CCDC 182/851.

1 W. J. Grigsby and P. P. Power, J. Am. Chem. Soc., 1996, 118, 7981.
2 X.-W. Li, W. T. Pennington and G. H. Robinson, Organometallics, 1995, 14, 2109.
3 R. C. Crittendon, X.-W. Li, J. Su and G. H. Robinson, Organometallics, 1997, 16, 2443.
4 X.-W. Li, W. T. Pennington and G. H. Robinson, Main Group Chem., 1995, 3, 301.
5 G. H. Robinson, X.-W. Li and W. T. Pennington, J. Organomet. Chem., 1995, 501, 399.
6 X.-W. Li, W. T. Pennington and G. H. Robinson, J. Am. Chem. Soc., 1995, 117, 7578.
7 X.-W. Li, Y. Xie, P. R. Schreiner, K. D. Gripper, R. C. Crittendon, C. F. Campana, H. F. Schaefer III and G. H. Robinson, Organometallics, 1996, 15, 3798.
8 Y. Xie, P. R. Schreiner, H. F. Schaefer III, X.-W. Li and G. H. Robinson, J. Am. Chem. Soc., 1996, 118, 10635.

9 Y. Xie, P. R. Schreiner, H. F. Schaefer III, X.-W. Li and G. H. Robinson, Organometallics, 1998, 17, 114.
10 R. J. Wehmschulte, W. J. Grigsby, B. Schiemenz, R. A. Bartlett and P. P. Power, Inorg. Chem., 1996, 35, 6694.

11 K. Ruhlandt-Senge, J. J. Ellison, R. J. Wehmschulte, F. Pauer and P. P. Power, J. Am. Chem. Soc., 1993, 115, 11353.
12 P. A. Akisin and N. G. Rambidi, Z. Phys. Chem., 1960, 213, 111; Z. Neorg. Khim. SSSR, 1960, 5, 23.
13 M. Mocker, C. Robl and H. Schnöckel, Angew. Chem., Int. Ed. Engl., 1994, 33, 1754; P. A. Akisin, N. G. Rambidi and E. Z. Zasovin, Sov. Phys. Crystallogr. (Engl. Transl.), 1959, 4, 167.
14 E. Rytter, B. E. D. Rytter, H. A. Øye and J. Krogh-Moe, Acta Crystallogr., Sect. B, 1975, 31, 2177.
15 M. A. Petrie, P. P. Power, H. V. R. Dias, K. Ruhlandt-Senge, K. M. Waggoner and R. J. Wehmschulte, Organometallics, 1993, 12, 1086.
16 J. D. Fisher, P. J. Shapiro, G. P. A. Yap and A. L. Rheingold, Inorg. Chem., 1996, 35, 271.
17 S. Schauer, W. T. Pennington and G. H. Robinson, Organometallics, 1992, 11, 3287.
18 G. M. Sheldrick, SHELXTL 5.0, Crystallographic Computing System, Siemens Analytical X-ray Instruments, Madison, WI, 1995.

Received in Columbia, MO, USA, 30th January 1998; 8/00847G

