Diastereoselective hydrogenation of *o***-toluic acid derivatives over supported rhodium and ruthenium heterogeneous catalysts**

Michele Besson,*† Pierre Gallezot, Samuel Neto and Catherine Pinel `

Institut de Recherches sur la Catalyse-CNRS, 2 avenue Albert Einstein, 69626 Villeurbanne Cedex, France

Asymmetric hydrogenation of an *o***-toluic acid derivative to 2-methylcyclohexanoic acid with high optical selectivity (up to 95%) was performed by using (***S***)-pyroglutamic acid** methyl ester as a chiral auxiliary and Rh–Al₂O₃ as the **catalyst.**

Diastereoselective catalytic hydrogenation with heterogeneous metal catalysts has been applied for the reduction of $C=C, C=O$ or C=N bonds.^{1,2} Modest to high diastereoselectivities were obtained, depending on the chiral auxiliary used and the nature of the heterogeneous catalyst. Recently, this method was proposed to hydrogenate aromatic rings.3,4 Thus, (*S*)-*N*- (2-methylbenzoyl)proline methyl ester was hydrogenated quantitatively on pretreated $Rh - Al₂O₃$ in the presence of a bulky amine (ethyldicyclohexylamine = EDCA); the *cis* isomer was obtained preferentially (yield > 97%) with diastereoisomeric excess (de) values reaching 67%.⁵ We now report on the use of a pyroglutamic acid derivative as a chiral auxiliary which permits the diastereoselective reduction of aromatic moities with higher than 90% de.

Substrate **1** was synthesized with a 82% yield, after purification, by coupling under mild conditions *o*-toluoyl chloride with pyroglutamic acid methyl ester (Scheme 1).6‡ The hydrogenation was carried out in a stirred autoclave at a hydrogen pressure of 5 MPa at room temperature. The substrate was dissolved in EtOH and supported rhodium or ruthenium catalysts (2–5 mol%) were added. EDCA (2–3 equiv. with respect to metal) was optionally added. The typical product distribution as a function of time (entry 5) is given in Fig. 1 for a hydrogenation performed over Ru–C catalyst. The aromatic substrate was hydrogenated to **3a** and **b** with a constant de; some

Scheme 1 *Reagents and conditions*: i, (*S*)-pyroglutamic acid methyl ester, toluene, $80^\circ \widetilde{\mathrm{C}}$, N₂

Fig. 1 Distribution of products *versus* time for hydrogenation of **1** over Ru– C (entry 5, Table 1). Reaction conditions: 2.26 mmol **1**, 0.063 mmol Ru, 130 ml EtOH, room temp., 5 MPa H2. Less than 3% of the *trans* compound was detected. $(①)$ **1**, $(④)$ **2**, $(②)$ **3a** and $(①)$ **3b**.

cyclohexenic compound **2** was formed transiently and consecutively hydrogenated to **3**. An overview of the most significant catalytic results is summarized in Table 1.

In all reactions, only small amounts of *trans*-cyclohexane derivative were found $(< 3\%)$ and the absolute configuration of the major *cis* product was *(1S,2R,2'S)*. Hydrogenation of *(S)-N*-(2-methylbenzoyl) pyroglutamic acid methyl ester **1** in the presence of Rh–C catalyst resulted in 35% de, whereas on Rh– \overline{Al}_2O_3 the conversion was slightly lower, although the diastereoselectivity was 90%. Addition of a bulky amine (EDCA) to the reaction medium lowered the reaction rate in both cases, but excellent diastereoisomeric excesses were observed, both on carbon (90% de) and on alumina (95% de). Compound **2** was detected in significant amounts only in the case of Rh–C; its hydrogenation gave preferentially **3b** and lowered the de.

In the case of the ruthenium catalyst, high diastereoselectivities were achieved without amine, irrrespective of the support (74 and 85% de on carbon and alumina, respectively). However, it was found that the reaction was slower on the aluminasupported catalyst. The semi-hydrogenated compound **2** was

Table 1 Results for hydrogenation of *o*-toluic acid derivatives **1**

	Entry Metal-support	metal ^a	Conversion EDCA: $(\%)^b$ after Yield 2 De 24h	$(\%)^b$	$(\%)_{b,c}$
	$Rh-C$ (Aldrich, 3.6%)		100 ^d	13	35
2	$Rh-Al2O3$ (Degussa, 3.7%)	$\overline{}$	89	5	90
3	$Rh-C$ (Aldrich, 3.6%)	C	49	3.5	90
4	$Rh–Al2O3$ (Degussa, 3.7%)	3	49	2	95
5	Ru–C (Aldrich, 5%) ^e		99	19	74
6	$Ru-Al_2O_3$ (Degussa, 3.7%) ^e		61	11	85
	Ru–C (Aldrich, 5%) ^e	3	61	10	83

a Molar ratio. *b* Determined by GC analysis (DB 1701). *c* The determination of the major configuration (1*S,2R,2'S*) was carried out by measuring the optical purity of the hydrolyzed product. *d* The conversion was complete after 100 min reaction. ^{*e*} Pretreated under H₂ at 300 °C for 2 h.

present in up to 19%, and due to steric constraints, it was hydrogenated with reduced de. The diastereoselectivity was increased from 74 to 83% when EDCA was added to the Ru–C catalyst.

These results clearly show that (*S*)-pyroglutamic acid methyl ester exerts much stronger chiral induction than (*S*)-proline derivatives since the de increased to 95% from 67%. This is probably due to the presence of the ketone group in the auxiliary, which plays a crucial role by interacting with the catalyst surface and blocking one of the faces of the aromatic ring.

Notes and References

† E-mail : mbesson@catalyse.univ-lyon1.fr

 \ddagger *Selected data* for **1** : white crystals; mp 108 °C; [α] $^{25}_{12}$ -28.9 (*c* 1, CHCl₃); δ_H (CDCl₃) 7.25 (m, 4 H), 4.96 (dd, 1 H, *J* 3.4, 5.8), 3.83 (s, 3 H), 2.74–2.07 $(m, 4 H)$, 2.36 (s, 3 H); δ_C (CDCl₃) 173.0 (C), 171.5 (C), 170.4 (C), 135.5 (C), 135.0 (C), 130.4 (CH), 130.2 (CH), 126.9 (CH), 125.3 (CH), 57.9 (CH), 52.8 (CH₃), 31.7 (CH₂), 21.6 (CH₂), 19.2 (CH₃); v (KBr) cm⁻¹ 2928, 1751, 1679, 1304, 1218 [C, 64.62 (64.34); H, 5.77 (5.74); N, 5.32 (5.36); O, 24.07% (24.50)].

- 1 A. Tungler and K. Fodor, *Catal. Today,* 1997, **37**, 191.
- 2 M. Besson and C. Pinel, *Top. Catal.*, 1998, **5**, 25 and references cited therein.
- 3 M. Besson, B. Blanc, M. Champelet, P. Gallezot, K. Nasar and C. Pinel, *J. Catal.*, 1997, **170**, 254.
- 4 C. Exl, E. Ferstl, H. Hönig and R. Rogi-Kohlenprath, *Chirality*, 1995, 7, 211.
- 5 M. Besson, P. Gallezot, C. Pinel and S. Neto, *Studies in Surface Science, Heterogeneous Catalysis and Fine Chemicals,* ed. H.-U. Blaser, Elsevier Science B. V., Amsterdam, 1997, vol. **108**, p. 215.
- 6 J. B. Behr, A. Defoin, J. Pires, J. Streith, L. Macko and M. Zehnder, *Tetrahedron*, 1996, **52**, 3283.

Received in Liverpool, UK, 15th April 1998; 8/02822B