Biosynthesis of kelsoene in cultured cells of liverworts Ptychanthus striatus

Kensuke Nabeta,^a Kanae Yamamoto,^a Makoto Hashimoto,^a Hiroyuki Koshino,^b Kenzo Funatsuki^c and Kenji Katoh^c

^a Department of Bioresource Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan

^b The Institute of Physical and Chemical Research, Wako, 351-0198 Japan

^c Shionogi Abrahi Laboratory, Kohga-cho, Shiga- ken 520-3423, Japan

The most uncommon tricyclic sesquiterpenes, kelsoene 1 and prespatane 2, were isolated from cultured cells of liverwort *Ptychanthus striatus*, and the labelling pattern of kelsoene biosynthesized from exogenous $[2-^{13}C]$ mevalonate suggested that kelsoene is biosynthesized from germacradienyl cation *via* alloaromadendranyl cation.

Sesquiterpenes kelsoene **1** and prespatane **2** were isolated for the first time from the tropical marine sponge *Cymbastella hooperi*.¹ Although the formation of an uncommon tricyclo[5.3.0.0^{2,5}]-decane ring system in kelsoene can be explained by the cyclization between C-1 and C-4 in alloaromadendranyl cation **6** with breaking of the C-4/C-11 bond and elimination of one proton from the *gem*-dimethyl groups, there was no experimental evidence provided regarding the biosynthesis of this compound.¹ Here we described the isolation of kelsoene **1** and prespatane **2** from suspension cultured cells of liverwort *Ptychanthus striatus* (Lejeuneaceae), which seems to have almost no phylogenetic relationship with tropical marine sponge, and the biosynthesis of kelsoene. Intact plants of *P. striatus* produce striatane-type sesquiterpenes² striatene, striatol and β -monocyclonerolidol.

A callus was induced from the leafy gametophytes of *P. striatus*, transfered on MSK-4 medium with 4% glucose but without 2,4-dichlorophenoxyacetic acid,³ successively subcultured every four weeks for more than four years, and then used for suspension culture. The suspension culture was propagated routinely in 100 cm³ of MSK-4 medium under continuous light of 3000 Lux at 25 °C for more than three years. Cells (1200 g fresh weight) were harvested and extracted with

Table 1 ¹³C enrichment of kelsoene incorporating [2-¹³C]-mevalonate^a

Carbon	$\delta_{ m C}$	¹³ C Enrichment ^b (atom% excess)	$J_{\mathrm{C-H}}/\mathrm{Hz}^c$
1	45.7	_	_
2	33.0	3.62	136
3	14.6	_	136
4	47.4	_	144
5	48.1	_	131
6	49.9	_	131
7	36.3	_	-
8	33.2	4.52	131
9	26.0	_	131
10	57.8	_	131
11	145.6	_	-
12	109.8	0.98	156
13	24.2	0.90	127
14	23.5	_	124
15	17.7	-	126
Average		3.34	

^{*a*} All assignments are based on extensive 1D and 2D NMR measurements and previously reported data. ^{*b*} ¹³C Enrichment was calculated on the basis of relative peak intensity of ¹³C enriched peak to non-labelled carbon in biosynthetically labelled compound. ^{*c*} C–H coupling constants were determined by gated ¹H decoupling ¹³C NMR analysis.

Scheme 1 Biosynthetic pathway to kelsoene **1** from [2-¹³C]-mevalonate in cultured cells of *P. striatus*

EtOAc (6.23 g). Kelsoene **1** (6.6 mg) and prespatane **2** (2.3 mg were isolated from the extract by a judicious combination of liquid chromatography (silica gel and silica gel–AgNO₃). Full assignment of the natural abundance ¹H and ¹³C NMR spectra of (+)-kelsoene {[α]_D +77.1 (lit.,¹ +78.1)} was identified by extensive 1D (¹H, ¹³C and differential NOE) and 2D NMR experiments (PFG-DQF-COSY,⁴ PFG-HMQC,⁵ PFG-HMBC⁶). Prespetane **2** was identified by comparison of ¹H and ¹³C NMR and mass spectral data with those reported previously.¹

Potassium [2-¹³C]-mevalonate (MVA, 0.5 mmol) was then fed to the culture (100 cm³). Cells were harvested after 21 days and extracted with EtOAc. The enriched kelsoene was purified by repeated liquid chromatography as described above.

The ${}^{13}C{}^{1}H$ NMR spectrum of kelsoene derived from [2- ${}^{13}C$]-mevalonate (average ${}^{13}C$ enrichment: 3.34 atom%

Chem. Commun., 1998 1485

excess, Table 1) showed enrichment at the C-2, C-8, C-12 and C-13 positions (4.52, 3.62, 0.98 and 0.90 atom% excess, respectively). Randomization of label between C-12 and C-13 was observed. The level of ¹³C enrichment in each carbon was determined by comparing the relative intensities of ¹³C enriched carbons in each carbon with those of the corresponding carbons in the non-labelled compound.

These results may be rationalized by the sequence illustrated in Scheme 1. Cyclization of farnesyl diphosphate 4 to germacradienyl cation 5 via the $(4S^*)$ -isopropyl cation would be followed by concomitant intramolecular cyclization between C-6 and C-10 and between C-5 and C-11 of 5 with loss of a proton at C-5 to form a cis fused cyclopentane ring and a cyclopropane ring in the resultant alloaromadendranyl cation 6. Cleavage of the cyclopropane ring and ring closure between C-1 and C-4 with loss of one proton from the gem-dimethyl groups generates kelsoene 1. Observed randomization of label between C-12 and C-13 in kelsoene suggested that the protons of the gem-dimethyl groups on the cyclopropane ring in the cation 6 were almost equally eliminated during the conversion of 6 to 1. Alternatively, the cation at C-11 of 5 might be attacked at both the re and si faces to form 6a and 6b. A proton is then eliminated specifically from a methyl group in either of the two planes of the cyclopropane ring. The co-metabolite, prespatane 2, might be biosynthesized from a guaianyl cation 8 via cation 7 with a $(4R^*)$ isopropyl cation.

Although kelsoene and prospatane were isolated from the marine sponge, they may represent a simple accumulation of constituents from a dietary source such as marine algae, since

there is a hypothesis that bryophytes originate in green $algae.^7$

Notes and References

† E-mail: knabeta@obihiro.ac.jp

- 1 G. M. Konig and A. D. Wright, J. Org. Chem., 1997, 62, 3837.
- 2 R. Takeda, H. Naoki, T. Iwashita, K. Mizukami, Y. Horose, T. Ishida and M. Inoue, *Bull. Chem. Soc. Jpn.*, 1983, 56, 1125.
- 3 R. Takeda and K. Katoh, *Planta*, 1981, **151**, 525.
- 4 R. E. Hurd, J. Magn. Reson., 1990, 87, 422.
- 5 R. E. Hurd and B. K. John, J. Magn. Reson., 1991, 91, 648.
- 6 W. Willker, D. Leibfrinz, R. Kerssebaum and W. Bermel, *Magn. Reson. Chem.*, 1993, **31**, 287.
- 7 Y. Asakawa, in *Progress in the Organic Natural Products*, ed. W. Herz, G. W. Kirby, R. E. Moore, W. Steglich and C. Tamm, Springer-Verlag, vol. 65, pp. 1–618.

Received in Cambridge, UK, 20th April 1998; 8/02908C