Preparation and catalytic properties of single phase Ni–Sn intermetallic compound particles by CVD of Sn(CH₃)₄ onto Ni/silica

Ayumu Onda, Takayuki Komatsu*† and Tatsuaki Yashima

Department of Chemistry, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551, Japan

Particles of each of the single phase Ni–Sn intermetallic compounds Ni_3Sn , Ni_3Sn_2 and Ni_3Sn_4 have been formed on silica by chemical vapor deposition (CVD) of $Sn(CH_3)_4$ onto Ni/SiO_2 and used as catalysts for cyclohexane dehydrogenation.

We have previously reported unique catalytic selectivities of Co or Pt containing intermetallic compounds (IMCs) for the partial hydrogenation of acetylene¹ or buta-1,3-diene;² however, their catalytic activities suffered from low specific surface areas. It was reported that Sn–M (M = Rh, Pt, Pd or Ni) bimetallic catalysts were prepared by CVD of organotin complexes on M/SiO_2 ,^{3–5} Tin species are deposited by the CVD method preferentially onto the particles of these noble metals. In this study, we applied the CVD method to prepare fine particles of single phase Ni–Sn IMCs on SiO₂, which were found to have unique catalytic selectivities in the dehydrogenation of cyclohexane.

Ni (5 wt%)/SiO₂ was first prepared by an incipient wetness method using Ni(NO₃)₂ and silica gel (Fuji-Silysia, Caliact 6), followed by reduction at 723 K in H₂. The average diameter of the Ni particles measured by TEM, XRD and chemisorption of H₂ was about 7 nm. CVD of Sn(CH₃)₄ (Soekawa Chemicals) onto Ni/SiO₂ was carried out at 373–523 K with flowing H₂ containing 33 Torr of Sn(CH₃)₄, followed by hydrogen treatment at 873–1173 K. The samples were dissolved in hydrochloric acid and the amounts of Ni and Sn were determined by ICP. Unsupported Ni–Sn IMCs were prepared by melting a mixture of Ni and Sn powders in an electric furnace at 1730 K under flowing argon, and the resulting ingot was crushed into 25–38 µm particles. A glass circulation system was used for the pretreatment of catalysts with H₂ and subsequent catalytic reactions.

CVD of $Sn(CH_3)_4$ was carried out at various temperatures for 1 h to prepare each Ni–Sn IMC (Ni₃Sn, Ni₃Sn₂ and Ni₃Sn₄). Fig. 1 shows the amount of deposited Sn as a function of CVD temperature on Ni/SiO₂ (*a*) or SiO₂ (*b*). The amounts of deposited Sn increased with CVD temperature on both supports.

Fig. 1 Effect of CVD temperature on the amount of Sn supported by $Sn(CH_3)_4$ on Ni/SiO₂ (*a*) or on SiO₂ (*b*)

However, the amounts of deposited Sn on Ni/SiO2 were much larger than those on SiO_2 . In particular, no appreciable deposition of Sn was observed on SiO₂ below 423 K. Sn(CH₃)₄ was selectively decomposed on Ni particles owing to the high activity of Ni for the hydrogenolysis of Sn(CH₃)₄. When CVD of Sn(CH₃)₄ was carried out onto Ni/SiO₂ at 423, 448 and 498 K, the Ni/Sn atomic ratios of the samples became very close to 3/1, 3/2 and 3/4, respectively. If Sn atoms are deposited on the surface of Ni particles to form a few Sn layers, the Ni/Sn ratio must be much higher than unity. Therefore, during the CVD treatment, some of the deposited Sn atoms will enter into the bulk of the Ni particles after the hydrogenation of Sn(CH₃)₄ with the evolution of methane. In fact, the X-ray diffraction pattern of Ni-Sn/SiO₂ samples just after CVD included weak peaks of Ni-Sn IMCs in addition to those of Ni metal. Hydrogen treatment after CVD was then performed in order to form single phase Ni₃Sn, Ni₃Sn₂ and Ni₃Sn₄ particles.

Fig. 2 shows the X-ray diffraction patterns of the silicasupported Ni–Sn IMC (Ni/Sn = 3/1) after hydrogen treatment at 1173 K for 1 h (*a*) and of the unsupported Ni₃Sn powder (*b*). The supported sample did not show the same diffraction peaks as those of pure Ni supported on SiO₂ (*c*) and pure Sn supported on SiO₂ (*d*), but showed almost exclusively peaks at the same positions as those of unsupported Ni₃Sn. This result confirmed that single phase Ni₃Sn particles were formed on SiO₂ by the CVD and subsequent hydrogen treatment. Generally, Ni₃Sn is formed above 1730 K, because the melting points of Ni and Sn are 1730 K and 505 K, respectively. In this study, we succeeded in the formation of single phase Ni₃Sn particles by hydrogen treatment at much lower temperature after the CVD process.

The XRD measurements showed that single phase Ni_3Sn_2 and Ni_3Sn_4 particles were also formed on SiO_2 by hydrogen treatment at 873 and 723 K after CVD at 448 and 498 K, respectively. It is revealed that the lower the Ni/Sn ratio, the

Fig. 2 XRD patterns of supported Ni–Sn IMCs (Ni/Sn = 3/1) on SiO₂ prepared by CVD after hydrogen treatment at 1173 K for 1 h (*a*), unsupported Ni₃Sn (*b*), Ni/SiO₂ prepared by the incipient wetness method after reduction (*c*) and Sn/SiO₂ prepared by CVD of Sn(CH₃)₄ on SiO₂ (*d*)

Chem. Commun., 1998 1507

Fig. 3 Conversion of cyclohexane (open symbols) and selectivity to benzene (closed symbols) at 823 K on 0.05 g of Ni₃Sn/SiO₂ (\bigcirc , \bigcirc), 0.5 g of unsupported Ni₃Sn (\blacksquare , \square) and 0.5 g of unsupported Ni (\triangle , \blacktriangle)

lower the temperature of hydrogen treatment necessary for the formation of single phase Ni–Sn IMCs. The broad diffraction peaks of supported Ni₃Sn [Fig. 2(*a*)] suggest that the Ni₃Sn particles have much smaller diameters than those of unsupported Ni₃Sn. The particle sizes of Ni₃Sn, Ni₃Sn₂ and Ni₃Sn₄ determined by XRD were about 18, 12 and 12 nm, respectively. These values correspond roughly with the diameters estimated by TEM. Ni₃Sn particles had the largest diameter as these were formed at the highest temperature in the hydrogen treatment. The use of Ni/SiO₂ with smaller Ni particles would lead to Ni–Sn IMCs with smaller particles. It is concluded that all kinds of single phase Ni–Sn intermetallic compounds are obtained on silica by the CVD of Sn(CH₃)₄ and subsequent hydrogen treatment at temperatures much lower than the melting point of Ni.

The reaction profiles of cyclohexane in hydrogen at 823 K on silica-supported and unsupported Ni_3Sn IMCs and pure Ni catalysts are shown in Fig. 3. The initial molar ratio of hydrogen

to cyclohexane was 6. On the unsupported Ni, benzene was formed as an initial product and was then converted completely into methane in 2 h. On the other hand, the unsupported Ni₃Sn catalyst scarcely converted the initially produced benzene into methane even at higher cyclohexane conversions, though the activity was lower than Ni. The high selectivity to benzene was revealed to be the characteristic catalysis of Ni₃Sn IMC, which would be due to the weaker adsorption of benzene on Ni₃Sn than on Ni. Silica-supported Ni₃Sn showed almost the same selectivity as the unsupported Ni₃Sn. This implies that no pure Ni particles that are too small to be detected by XRD exist on the silica-supported catalyst. Ni₃Sn has the composition richest in Ni among the Ni-Sn IMCs studied. Therefore, it is also indicated that there would be few Ni₃Sn₂, Ni₃Sn₄ or Sn small particles on the silica gel because the Ni/Sn atomic ratio of this sample (3.1/1) was very close to the stoichiometry of Ni₃Sn. Comparing the activity per weight of Ni₃Sn, the supported Ni₃Sn was 500 times more active than the unsupported Ni₃Sn, though the activities of both catalysts per surface area of Ni₃Sn were almost the same. It is clear that the CVD method has resulted in the preparation of silica-supported Ni-Sn IMC catalysts with higher activities than the unsupported ones, owing to the much higher specific surface areas, with retention of the high selectivity to benzene.

Notes and References

† E-mail: komatsu@chem.titech.ac.jp

- 1 T. Komatsu, M. Fukui and T. Yashima, *Stud. Surf. Sci. Catal.*, 1996, **101**, 1095.
- 2 T. Komatsu, S. Hyodo and T. Yashima, J. Phys. Chem. B, 1997, 101, 5565.
- 3 J. P. Candy, A. E. Mansour, O. A. Ferretti, G. Mablion, J. P. Bournonville J. M. Basset and G. Martino, J. Catal., 1988, 112, 201.
- 4 P. Lesage, O. Clause, P. Moral, B. Didillon, J. P. Candy and J. M. Basset, J. Catal., 1995 155, 238.
- 5 K. Tomishige, K. Asakura and Y. Iwasawa, J. Catal., 1994, 149, 70.

Received in Cambridge, UK, 24th April 1998; 8/03071E