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A convenient synthesis of the cruciferous phytoalexins brassicanal A and
brassilexin by mimicry of a fungal detoxification pathway

M. Soledade C. Pedras*† and Francis I. Okanga

Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK, Canada S7N 5C9

The cruciferous phytoalexin brassilexin 3 has been synthe-
sized in four steps from indoline-2-thione via 3-(aminome-
thylene)indole-2-thione 2, a metabolic intermediate of the
detoxification pathway of the phytoalexin cyclobrassinin 1;
in addition, the phytoalexin brassicanal A 8 has been
synthesized in two steps from 2-indolinethione.

It is now well-recognized that the blackleg fungus [Phoma
lingam (Tode ex Fr.) Desm., perfect stage Leptosphaeria
maculans (Desm.) Ces. et de Not.], one of the most destructive
fungal pathogens of rapeseed (Brassica napus, B. rapa), can
overcome the plant’s induced chemical defenses, i.e. phytoalex-
ins, by enzymatic detoxification.1–6 Recently, we reported6 an
unprecedented detoxification of the cruciferous phytoalexin
cyclobrassinin 17 via the phytoalexins brassilexin 38 and
dioxibrassinin 49,10 by isolates of P. lingam‡ (Scheme 1). A
detailed analysis of the metabolites involved in that fungal
biotransformation of cyclobrassinin 1 indicated that 3-(amino-
methylene)indole-2-thione 2, or its thiol tautomer(s), was a
precursor of brassilexin 3 (Scheme 1).6 In continuation of that
work we have now accomplished the synthesis of brassilexin 3
by mimicry of that detoxification pathway, utilizing the key
intermediate 2 (Scheme 2). This route provides a very
convenient process for preparation of both compounds 2 and 3,

offering also the possibility of introducing carbon and/or
nitrogen isotopes into the indol-3-yl substituents in good yield.
Previous syntheses of brassilexin 3 from indole-3-carbaldehyde
via cyclobrassinin 1 (11% overall yield),11–13 or directly from
indole-3-carbaldehyde (11–30% overall yield),14 have been
reported. However, our route affords the best overall yield to
date while following the simplest process in terms of purifica-
tion and reaction conditions. Utilizing the route shown on
Scheme 2, brassilexin 3 was obtained from indolinethione 515 in
four steps (typically 50 mg scale reactions) in ca. 64% overall
yield. In addition, this route provided aldehyde 6, which on
reaction with CH2N2 quantitatively yielded brassicanal A 8,
another cruciferous phytoalexin,16 in ca. 92% yield. This
synthesis of brassicanal A 8 also presents a great improvement
to the previously reported procedure, which employed methyla-
tion of indolinethione 5 followed by Vilsmeier formylation of
the corresponding 2-thiomethyl ether 9 (Scheme 2, 39% overall
yield from 5).4

During previous biotransformation studies,6 we observed that
brassilexin 3 could be obtained from metabolite 2 after standing
in solution or on silica gel TLC plates. Interestingly, this
transformation was catalyzed by activated charcoal to afford
brassilexin almost quantitatively, demonstrating that metabolite
2 would be a synthetically useful brassilexin precursor if
available in reasonable yields. One apparent method for the
preparation of 2 was the reduction of amino derivatives of
3-(hydroxymethylene)indole-2-thione (or equivalent tautomer,
e.g. 6) similar to the preparation of 3-hydroxymethylene-
2-oxoindole derivatives.17 Thus, formylation of thione 515 with
EtO2CH afforded aldehyde 6, whose 1H and 13C NMR
spectroscopic data§ indicated that only the thiol tautomeric
form was present. Oximination of 6 under standard conditions18

yielded quantitatively oxime 7, which was readily reduced to
the desired intermediate 2 with NaBH3CN in the presence of
TiCl3.19 Finally, treatment of 2 with activated charcoal afforded
brassilexin in excellent yield.¶

It is worth noting that thione 2 was hypothesized to be a
biogenetic precursor of brassilexin 3 in planta.6 In addition,
although thiol 6 does not appear to have been prepared
previously, it was proposed as a precursor of brassicanal A in
planta.20 Our facile synthesis of intermediates 2 and 6 offers the
possibility of isotopic labelling and should facilitate future
biosynthetic studies on brassilexin 3 and brassicanal A 8.
Particularly because brassilexin 3 appears to be involved in the
blackleg disease resistance of several agriculturally important
cruciferous oilseeds (e.g. B. juncea, B. carinata),21 its bio-
synthesis has tremendous potential application and is presently
under investigation in our laboratory.
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Notes and References

† E-mail: pedras@sask.usask.ca
‡ The fungal species Phoma lingam is subdivided in various groups (cf.
M. S. C. Pedras, J. L. Taylor and V. M. Morales, Phytochemistry, 1995, 38,
1215; J. L. Taylor, M. S. C. Pedras and V. M. Morales, Trends Microbiol.,

Scheme 1 Transformation of cyclobrassinin by the phytopathogenic fungus
Phoma lingam: i, ‘avirulent’ isolate Unity; ii, ‘virulent’ isolate BJ 2125

Scheme 2 Reagents and conditions: i, NaH, HCO2Et, 25 °C, 92%; ii,
NH2OH·HCl, AcONa, EtOH, reflux, quant.; iii, TiCl3, NaBH3CN, MeOH,
25 °C, 85%; iv, activated charcoal, 25 °C, 82%; v, CH2N2, Et2O, 25 °C,
quant.
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1995, 3, 202); the so-called ‘avirulent’ group, e.g. isolate Unity, is now
considered a species different from that of the ‘virulent’ group, e.g. BJ-125,
although no formal reclassification has been carried out.
§ Selected data for 6: dH(500 MHz, CD3OD) 9.49 (s, CHO), 8.15 (d, J 8.0,
1 H), 7.48 (d, J 8.0, 1 H), 7.37 (dd, J 8.0, 7.5, 1 H), 7.27 (dd, J 8.0, 7.5,
1 H); dH(500 MHz, [2H6]DMSO) 12.77 (br s, NH), 9.49 (s, CHO), 8.06 (d,
J 8.0, 1 H), 7.50 (d, J 8.0, 1 H), 7.35 (dd, J 8.0, 7.0, 1 H), 7.26 (dd, J 8.0,
7.0, 1 H); dC(125.5 MHz, [2H6]DMSO) 184.3, 138.5, 137.1, 125.2, 124.6,
122.9, 120.8, 119.8, 112.3; HRMS: found 177.0249 (calc. for C9H7NOS:
177.0248); m/z (EI) 177 (M+, 100%), 149 (18), 148 (24), 121 (15); m/z (CI)
178 (M+ + 1, 19%), 164 (32), 150 (24), 146 (100), 132 (50). For 7: dH(300
MHz, CD3CN): d 9.88 (br s, NH), 8.52 (br s, OH), 8.03 (d, J 8.0, 1 H), 7.95
(s, H-1’), 7.42 (d, J 8.0, 1 H), 7.31 (dd, J 8.0, 7.0, 1 H), 7.21 (dd, J 8.0, 7.0,
1 H); dC(75.5 MHz, CD3CN) 145.2, 138.9, 131.1, 126.0, 125.7, 123.5,
122.4, 117.2, 112.6; HRMS: found 174.0251 (calc. for C9H8N2OS 2 H2O:
174.0252); m/z (EI) 174 (M+ 2 H2O, 100%), 149 (51), 142 (24); m/z (CI)
175 (M+ + 12 H2O, 100%).
¶ All compounds gave satisfactory spectroscopic data.
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