The activation of carbon disulfide by a cluster. The reaction of the μ_3 -CS complex [{Co(η -C₅H₅)}₂{Fe(CO)₂PPh₃}(μ_3 -S)(μ_3 -CS)] with CS₂

Anthony R. Manning, a† Anthony J. Palmer, a John McAdam, Brian H. Robinson and Jim Simpson b†

^a Department of Chemistry, University College, Belfield, Dublin 4 Ireland,

When $[\{Co(\eta-C_5H_5)\}_2\{Fe(CO)_2PPh_3\}(\mu_3-S)(\mu_3-CS)]$ is refluxed in CS_2 solution, it is converted to $[\{Co(\eta-C_5H_5)\}_2\{Fe(CO)PPh_3\}(\mu_3-S)\{\mu_3-CSC(S)S\}]$ which contains an unusual C_2S_3 bridging ligand.

[{Co(η-C₅H₅)}₂{Fe(CO)₂PPh₃}(μ₃-S)(μ₃-CS)] **I** is formed when the η²-CS₂ ligand in [Fe(PPh₃)₂(CO)₂(η²-CS₂)] is cleaved by [Co(η-C₅H₅)(PPh₃)₂].^{1,2} When a solution of this compound in carbon disulfide is heated to reflux for 12 hours, a further molecule of CS₂ is taken up and CO is lost. The product, **II**, is obtained in 75% yield. It is a brown crystalline solid which, when crystallized from carbon disulfide solution, analyses as $Co_2(η-C_5H_5)_2Fe(CO)(PPh_3)(S)(CS)\cdot 2CS_2$. This is consistent with NMR and IR spectroscopic data,‡ but does not define the actual structure of **II** which was determined by X-ray crystallography on a crystal grown from benzene solution which analyzed as [{Co(η-C₅H₅)}₂{Fe(CO)PPh₃}(μ₃-S){μ₃-CSC(S)S}]·2C₆H₆.§ It is illustrated in Fig. 1.

The molecular structure of **II** is closely related to that of $I^{1,2}$ and is based on an FeCo₂ triangle capped on one face by a μ_3 -S ligand and on the other by a μ_3 -C atom. The coordination about each of the two Co atoms is completed by a η^5 -C₅H₅ group whilst that about Fe is completed by a CO and a Ph₃P ligand and the S* atom of a S*C(S)S moiety which is also bonded to the μ_3 -C atom. The coordination about Fe is severely distorted from that found in **I** where the Fe(L)₃ fragment is more or less symmetrical with respect to an axis from Fe to the midpoint of the Co–Co bond. Furthermore the FeCo₂ triangle is no longer an isosceles triangle as it is in **I** [Fe–Co = 2.5099(6), 2.5061(6) Å] as Fe(1)–Co(1) at 2.642(3) Å is very much longer than Fe(1)–Co(2) at 2.502(4) Å.

The C_2S_3 ligand has no precedent. The various C–S bond lengths lie between those for a C=S $(ca. 1.62 \text{ Å in thioketones})^3$

Fig. 1 Structure of $\{Co(\eta-C_5H_5)\}_2\{Fe(CO)(CS_2)PPh_3\}(\mu_3-S)(\mu_3-CS)\}$

Scheme 1

and a C-S (ca. 1.82 Å in thioethers)3 which is indicative of delocalised bonding. In particular the µ₃-C-S distance in II [1.774(11) Å] is very long compared with that in I [1.638(3) Å] S-methylated derivative, $[\{Co(\eta-C_5H_5)\}_2\{Fe-C_5H_5\}]$ $(CO)_2PPh_3$ $\{(\mu_3-S)(\mu_3-CSMe)]I$, [III]I, [1.728(7) Å]. The C–S distances are all longer than the comparable ones in [Co(η- C_5H_5)(CNBu^t)($S_2C=S$)].⁴ The overall reaction which gives rise to **II** is shown in Scheme 1. It is reminiscent of that of a thiolate anion, RS-, which with CS2 forms a thioxanthate anion [RSCS₂]⁻⁵ and is a reflection of the nucleophilicity of the μ₃-CS ligand which has been illustrated by the ease with which I is alkylated to III+ salts. The related complex [{Co(η- C_5H_5) $_3(\mu_3-S)(\mu_3-CS)$] is also readily alkylated at S to give [$\{Co(\eta-C_5H_5)\}_3(\mu_3-S)(\mu_3-CSMe)$]I, but it does not react with CS₂. This implies that the conversion of I to II takes place because the first-formed [{Co(η -C₅H₅)}₂{Fe(CO)₂PPh₃}(μ ₃-S)(μ_3 -CS \rightarrow CS₂] intermediate can undergo CO loss with the formation of an Fe–S bond which stabilizes the C₂S₃ ligand.

Analogues of **II** are obtained when Ph₃P in **I** is replaced by (PhO)₃P or Bun₃P, but not when it is replaced by (MeO)₃P. The extent of this reaction is being investigated at present.

The exocyclic S atom in Π is nucleophilic and with electrophiles E such as $Me^+(I^-)$ or $HgCl_2$ gives [{Co(η -C₅H₅)}₂{Fe(CO)PPh₃}(μ_3 -S){ μ_3 -CSC(S \rightarrow E)S}] adducts. These have been characterized by elemental analysis and spectroscopy.

Attempts to use **I** to activate other cumulenes such as CO_2 , COS and MeNCS have not, as yet, been successful. The only isolable product has been $[\{Co(\eta-C_5H_5)\}_3(\mu_3-S)(\mu_3-CS)],^6$ which is a thermal decomposition product of **I**.

We thank Professor W.T. Robinson, University of Christchurch, Christchurch, New Zealand for collecting the X-ray data, and Labkem Ltd. (Dublin) for financial assistance to A. J. P.

Notes and References

† E-mail: armannin@ollamh.ucd.ie; jsimpson@alkali.otago.ac.nz ‡ Spectroscopic data for Π : ν (CO) 1922 cm $^{-1}$ (KBr disc); 1 H NMR (CDCl $_{3}$ solution) δ 4.11(s) and 4.90(s) (C $_{5}$ H $_{5}$); 7.40 (m) (PPh $_{3}$); 13 C NMR (CDCl $_{3}$ solution) δ 84.93 and 86.08 (C $_{5}$ H $_{5}$); 128.3(d), 130.2(s), 133.5(d), 135.0(d)

(PPh₃); 218.7 (d, J = 22.2 Hz; CO); 243.4 (d, J = 18.7 Hz; SCS); 346.1 (d, J = 15.3 Hz; μ_3 -C) [all downfield from (CH₃)₄Si; d = doublet]. § *Crystal data* for **II**: C₄₃H₃₇Co₂FeOPS₄, M = 902.65, monoclinic, space

§ Crystal data for **II**: C₄₃H₃₇Co₂FeOPS₄, M = 902.65, monoclinic, space group $P2_1/n$, a = 9.853(13), b = 19.97(2), c = 20.61(2) Å, $\alpha = 90$, $\beta = 9.853(13)$

^b Department of Chemistry, University of Otago, Dunedin, New Zealand

- 91.79(4), $\gamma=90^\circ$, U=4055(8) ų; Z=4; $D_c=1.478$ Mg m³; absorption coefficient 1.440 mm¹; F(000) 1848; data collection 2.04 $<\theta<25.01^\circ$, -11<h<0, 0<k<23, -24<h<24, reflections collected 6687, independent reflections collected 6380. Solved by direct methods.8 Refined by full-matrix least-squares9 to $R_1=0.0692$ and $wR_2=0.1575$ [$I=2\sigma(I)$], and $R_1=0.1488$ and $wR_2=0.1823$; max. and min. residual electron densities =1.482 and -0.620 e Ŭ³, respectively. CCDC 182/907.
- A. R. Manning, L. O'Dwyer, P. A. McArdle and D. Cunningham, J. Chem. Soc., Chem. Commun., 1992, 897.
- 2 A. R. Manning, L. O'Dwyer, P. A. McArdle and D. Cunningham, J. Organomet. Chem., in press, and references therein.
- 3 F. H. Allen, O. Kennard, D. G. Watson, L. Brammer, A. G. Orpen and R. Taylor, *J. Chem. Soc., Perkin Trans.* 2, 1987, S1.

- 4 J. Doherty, J. Fortune, A. R. Manning and F. S. Stephens, *J. Chem. Soc.*, *Dalton Trans.*, 1984, 1111.
- 5 D. Coucouvanis, Prog. Inorg. Chem., 1970, 11, 233.
- 6 H. Werner and K. Leonhard, Angew. Chem., Int. Ed. Engl., 1979, 18, 627.
 H. Werner, K. Leonhard, O. Kolb, E. Röttinger and H. Vahrenkamp, Chem. Ber., 1980, 113, 1654.
- 7 J. Fortune and A. R. Manning, Organometallics, 1983, 2, 1719.
- 8 G. M. Sheldrick, SHELXS-86, A program for the solution of crystal structures from diffraction data, University of Göttingen, Germany, 1986; G. M. Sheldrick, Acta Crystallogr., Sect. A, 1990, 46, 467.
- 9 G. M. Sheldrick, SHELXL-96, A program for the solution of crystal structures from diffraction data, University of Göttingen, Germany, 1996

Received in Cambridge, UK, 20th April 1998; 8/02906G