The activation of carbon disulfide by a cluster. The reaction of the $\mu_{3}-\mathrm{CS}$ complex $\left[\left\{\mathrm{Co}\left(\boldsymbol{\eta}-\mathrm{C}_{5} \mathbf{H}_{5}\right)\right\}_{2}\left\{\mathrm{Fe}(\mathbf{C O})_{2} \mathbf{P P h}_{3}\right\}\left(\mu_{3}-\mathrm{S}\right)\left(\mu_{3}-\mathrm{CS}\right)\right]$ with CS_{2}

Anthony R. Manning, ${ }^{a} \dagger$ Anthony J. Palmer, ${ }^{a}$ John McAdam, ${ }^{b}$ Brian H. Robinson ${ }^{b}$ and Jim Simpson ${ }^{b} \dagger$
${ }^{a}$ Department of Chemistry, University College, Belfield, Dublin 4 Ireland,
${ }^{b}$ Department of Chemistry, University of Otago, Dunedin, New Zealand

When $\left[\left\{\mathrm{Co}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right\}_{2}\left\{\mathrm{Fe}(\mathrm{CO})_{2} \mathrm{PPh}_{3}\right\}\left(\mu_{3}-\mathrm{S}\right)\left(\mu_{3}-\mathrm{CS}\right)\right]$ is refluxed in CS_{2} solution, it is converted to $\left[\left\{\mathrm{Co}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right\}_{2}\{\mathrm{Fe}-\right.$ $\left.\left.(\mathrm{CO}) \mathrm{PPh}_{3}\right\}\left(\mu_{3}-\mathrm{S}\right)\left\{\mu_{3}-\mathrm{CSC}(\mathrm{S}) \mathrm{S}\right\}\right]$ which contains an unusual $\mathrm{C}_{2} \mathrm{~S}_{3}$ bridging ligand.
$\left[\left\{\mathrm{Co}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right\}_{2}\left\{\mathrm{Fe}(\mathrm{CO})_{2} \mathrm{PPh}_{3}\right\}\left(\mu_{3}-\mathrm{S}\right)\left(\mu_{3}-\mathrm{CS}\right)\right] \quad \mathbf{I}$ is formed when the $\eta^{2}-\mathrm{CS}_{2}$ ligand in $\left[\mathrm{Fe}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{CO})_{2}\left(\eta^{2}-\mathrm{CS}_{2}\right)\right]$ is cleaved by $\left[\mathrm{Co}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right] .{ }^{1,2}$ When a solution of this compound in carbon disulfide is heated to reflux for 12 hours, a further molecule of CS_{2} is taken up and CO is lost. The product, II, is obtained in 75% yield. It is a brown crystalline solid which, when crystallized from carbon disulfide solution, analyses as $\mathrm{Co}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Fe}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)(\mathrm{S})(\mathrm{CS}) \cdot 2 \mathrm{CS}_{2}$. This is consistent with NMR and IR spectroscopic data, \ddagger but does not define the actual structure of II which was determined by X-ray crystallography on a crystal grown from benzene solution which analyzed as $\left[\left\{\mathrm{Co}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right\}_{2}\left\{\mathrm{Fe}(\mathrm{CO}) \mathrm{PPh}_{3}\right\}\left(\mu_{3}-\right.\right.$ S) $\left.\left\{\mu_{3}-\mathrm{CSC}(\mathrm{S}) \mathrm{S}\right\}\right] \cdot 2 \mathrm{C}_{6} \mathrm{H}_{6}$. § It is illustrated in Fig. 1.

The molecular structure of $\mathbf{I I}$ is closely related to that of $\mathbf{I}^{1,2}$ and is based on an FeCo_{2} triangle capped on one face by a $\mu_{3}-\mathrm{S}$ ligand and on the other by a $\mu_{3}-\mathrm{C}$ atom. The coordination about each of the two Co atoms is completed by a $\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}$ group whilst that about Fe is completed by a CO and a $\mathrm{Ph}_{3} \mathrm{P}$ ligand and the S^{*} atom of a $S^{*} C(S) S$ moiety which is also bonded to the $\mu_{3}-\mathrm{C}$ atom. The coordination about Fe is severely distorted from that found in \mathbf{I} where the $\mathrm{Fe}(\mathrm{L})_{3}$ fragment is more or less symmetrical with respect to an axis from Fe to the midpoint of the $\mathrm{Co}-\mathrm{Co}$ bond. Furthermore the FeCo_{2} triangle is no longer an isosceles triangle as it is in $\mathbf{I}[\mathrm{Fe}-\mathrm{Co}=2.5099(6), 2.5061(6) \mathrm{A}]$ as $\mathrm{Fe}(1)-\mathrm{Co}(1)$ at $2.642(3) \mathrm{A}$ is very much longer than $\mathrm{Fe}(1)-$ $\mathrm{Co}(2)$ at $2.502(4) \AA$.
The $\mathrm{C}_{2} \mathrm{~S}_{3}$ ligand has no precedent. The various $\mathrm{C}-\mathrm{S}$ bond lengths lie between those for a $\mathrm{C}=\mathrm{S}(c a .1 .62 \AA \text { in thioketones })^{3}$

Fig. 1 Structure of $\left.\left\{\mathrm{Co}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right\}_{2}\left\{\mathrm{Fe}(\mathrm{CO})\left(\mathrm{CS}_{2}\right) \mathrm{PPh}_{3}\right\}\left(\mu_{3}-\mathrm{S}\right)\left(\mu_{3}-\mathrm{CS}\right)\right]$

Scheme 1
and a C-S (ca. $1.82 \AA$ in thioethers) ${ }^{3}$ which is indicative of delocalised bonding. In particular the $\mu_{3}-\mathrm{C}-\mathrm{S}$ distance in II [1.774(11) \AA] is very long compared with that in \mathbf{I} [1.638(3) Å] or its S-methylated derivative, $\left[\left\{\mathrm{Co}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right\}_{2}\{\mathrm{Fe}-\right.$ $\left.\left.(\mathrm{CO})_{2} \mathrm{PPh}_{3}\right\}\left(\mu_{3}-\mathrm{S}\right)\left(\mu_{3}-\mathrm{CSMe}\right)\right] \mathrm{I},[\mathrm{III}] \mathrm{I},{ }^{2}[1.728(7) \AA]$. The $\mathrm{C}-\mathrm{S}$ distances are all longer than the comparable ones in $[\mathrm{Co}(\eta-$ $\left.\left.\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{CNBu}^{\mathrm{t}}\right)\left(\mathrm{S}_{2} \mathrm{C}=\mathrm{S}\right)\right] .{ }^{4}$ The overall reaction which gives rise to $\mathbf{I I}$ is shown in Scheme 1. It is reminiscent of that of a thiolate anion, RS^{-}, which with CS_{2} forms a thioxanthate anion $\left[\mathrm{RSCS}_{2}\right]^{-5}$ and is a reflection of the nucleophilicity of the μ_{3}-CS ligand which has been illustrated by the ease with which \mathbf{I} is alkylated to $\mathbf{I I I}^{+}$salts. The related complex [$\{\mathrm{Co}(\eta-$ $\left.\left.\left.\mathrm{C}_{5} \mathrm{H}_{5}\right)\right\}_{3}\left(\mu_{3}-\mathrm{S}\right)\left(\mu_{3}-\mathrm{CS}\right)\right]$ is also readily alkylated at S to give $\left[\left\{\mathrm{Co}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right\}_{3}\left(\mu_{3}-\mathrm{S}\right)\left(\mu_{3}\right.\right.$-CSMe $\left.)\right] \mathrm{I}$, but it does not react with CS_{2}. This implies that the conversion of I to II takes place because the first-formed $\left[\left\{\mathrm{Co}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right\}_{2}\left\{\mathrm{Fe}(\mathrm{CO})_{2} \mathrm{PPh}_{3}\right\}\left(\mu_{3}-\right.\right.$ $\mathrm{S})\left(\mu_{3}-\mathrm{CS} \rightarrow \mathrm{CS}_{2}\right]$ intermediate can undergo CO loss with the formation of an $\mathrm{Fe}-\mathrm{S}$ bond which stabilizes the $\mathrm{C}_{2} \mathrm{~S}_{3}$ ligand.

Analogues of II are obtained when $\mathrm{Ph}_{3} \mathrm{P}$ in \mathbf{I} is replaced by $(\mathrm{PhO})_{3} \mathrm{P}$ or $\mathrm{Bu}_{3} \mathrm{P}$, but not when it is replaced by $(\mathrm{MeO})_{3} \mathrm{P}$. The extent of this reaction is being investigated at present.

The exocyclic S atom in II is nucleophilic and with electrophiles E such as $\mathrm{Me}^{+}\left(\mathrm{I}^{-}\right)$or HgCl_{2} gives $[\{\mathrm{Co}(\eta-$ $\left.\left.\left.\mathrm{C}_{5} \mathrm{H}_{5}\right)\right\}_{2}\left\{\mathrm{Fe}(\mathrm{CO}) \mathrm{PPh}_{3}\right\}\left(\mu_{3}-\mathrm{S}\right)\left\{\mu_{3}-\mathrm{CSC}(\mathrm{S} \rightarrow \mathrm{E}) \mathrm{S}\right\}\right] \quad$ adducts. These have been characterized by elemental analysis and spectroscopy.

Attempts to use I to activate other cumulenes such as CO_{2}, COS and MeNCS have not, as yet, been successful. The only isolable product has been $\left[\left\{\mathrm{Co}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right\}_{3}\left(\mu_{3}-\mathrm{S}\right)\left(\mu_{3}-\mathrm{CS}\right)\right],{ }^{6}$ which is a thermal decomposition product of \mathbf{I}.

We thank Professor W.T. Robinson, University of Christchurch, Christchurch, New Zealand for collecting the X-ray data, and Labkem Ltd. (Dublin) for financial assistance to A. J. P.

Notes and References

\dagger E-mail: armannin@ollamh.ucd.ie; jsimpson@alkali.otago.ac.nz \ddagger Spectroscopic data for II: $v(\mathrm{CO}) 1922 \mathrm{~cm}^{-1}\left(\mathrm{KBr}\right.$ disc); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$ solution) $\delta 4.11(\mathrm{~s})$ and $4.90(\mathrm{~s})\left(\mathrm{C}_{5} \mathrm{H}_{5}\right) ; 7.40(\mathrm{~m})\left(\mathrm{PPh}_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$ solution) $\delta 84.93$ and $86.08\left(\mathrm{C}_{5} \mathrm{H}_{5}\right) ; 128.3(\mathrm{~d}), 130.2(\mathrm{~s}), 133.5(\mathrm{~d}), 135.0(\mathrm{~d})$ $\left(\mathrm{PPh}_{3}\right) ; 218.7(\mathrm{~d}, J=22.2 \mathrm{~Hz} ; \mathrm{CO}) ; 243.4(\mathrm{~d}, J=18.7 \mathrm{~Hz} ; \mathrm{SCS}) ; 346.1$ (d, $\left.J=15.3 \mathrm{~Hz} ; \mu_{3}-\mathrm{C}\right)$ [all downfield from $\left(\mathrm{CH}_{3}\right)_{4} \mathrm{Si} ; \mathrm{d}=$ doublet].
§ Crystal data for II: $\mathrm{C}_{43} \mathrm{H}_{37} \mathrm{Co}_{2} \mathrm{FeOPS}_{4}, M=902.65$, monoclinic, space group $P 2_{1} / n, a=9.853(13), b=19.97(2), c=20.61(2) \AA, \alpha=90, \beta=$
91.79(4), $\gamma=90^{\circ}, U=4055(8) \AA^{3} ; Z=4 ; D_{\mathrm{c}}=1.478 \mathrm{Mg} \mathrm{m}^{-3} ;$ absorption coefficient $1.440 \mathrm{~mm}^{-1} ; F(000)$ 1848; data collection $2.04<\theta<25.01^{\circ}$, $-11<h<0,0<k<23,-24<l<24$, reflections collected 6687, independent reflections collected 6380 . Solved by direct methods. ${ }^{8}$ Refined by full-matrix least-squares ${ }^{9}$ to $R_{1}=0.0692$ and $w R_{2}=0.1575[I=2 \sigma(I)]$, and $R_{1}=0.1488$ and $w R_{2}=0.1823$; max. and min. residual electron densities $=1.482$ and $-0.620 \mathrm{e} \mathrm{A}^{-3}$, respectively. CCDC 182/907.

1 A. R. Manning, L. O'Dwyer, P. A. McArdle and D. Cunningham, J. Chem. Soc., Chem. Commun., 1992, 897.

2 A. R. Manning, L. O'Dwyer, P. A. McArdle and D. Cunningham, J. Organomet. Chem., in press, and references therein.

3 F. H. Allen, O. Kennard, D. G. Watson, L. Brammer, A. G. Orpen and R.
Taylor, J. Chem. Soc., Perkin Trans. 2, 1987, S1.

4 J. Doherty, J. Fortune, A. R. Manning and F. S. Stephens, J. Chem. Soc., Dalton Trans., 1984, 1111.
5 D. Coucouvanis, Prog. Inorg. Chem., 1970, 11, 233.
6 H. Werner and K. Leonhard, Angew. Chem., Int. Ed. Engl., 1979, 18, 627. H. Werner, K. Leonhard, O. Kolb, E. Röttinger and H. Vahrenkamp, Chem. Ber., 1980, 113, 1654.
7 J. Fortune and A. R. Manning, Organometallics, 1983, 2, 1719.
8 G. M. Sheldrick, SHELXS-86, A program for the solution of crystal structures from diffraction data, University of Göttingen, Germany, 1986; G. M. Sheldrick, Acta Crystallogr., Sect. A, 1990, 46, 467.
9 G. M. Sheldrick, SHELXL-96, A program for the solution of crystal structures from diffraction data, University of Göttingen, Germany, 1996.

Received in Cambridge, UK, 20th April 1998; 8/02906G

