'Phospha-Wittig' reactions using isolable phosphoranylidenephosphines $\mathrm{ArP}=\mathrm{PR}_{3}\left(\mathrm{Ar}=\mathbf{2 , 6 - M e s} \mathbf{C}_{\mathbf{6}} \mathrm{H}_{3}\right.$ or 2,4,6-Bu$\left.{ }_{3} \mathrm{C}_{6} \mathbf{H}_{2}\right)$

Shashin Shah and John D. Protasiewicz* \dagger
Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106-7708, USA

Phosphoranylidenephosphines $\mathrm{DmpP}=\mathrm{PMe}_{3}$ (1a, $\mathrm{Dmp}=$ 2,6- $\mathrm{Mes}_{2} \mathrm{C}_{6} \mathrm{H}_{3}$) and $\mathrm{Mes}^{*} \mathrm{P}=\mathrm{PMe}_{3}$ (1b, Mes* = 2,4,6-But ${ }_{3} \mathrm{C}_{6} \mathrm{H}_{2}$) act as 'Phospha-Wittig' reagents with aldehydes providing phosphaalkenes $[\mathrm{ArP}=\mathrm{C}(\mathrm{H}) \mathrm{R}]$ in high yields.

The successful synthesis of a 'true phosphobenzene', Mes*P=PMes* (Mes* $=2,4,6-\mathrm{Bu}_{3} \mathrm{C}_{6} \mathrm{H}_{2}$), ${ }^{1}$ signaled a new era in the study of phosphorus-phosphorus double bonds. ${ }^{2}$ We have recently uncovered reactions of $\left[\mathrm{Cp}_{2} \mathrm{Zr}=\mathrm{PDmp}\left(\mathrm{PR}_{3}\right)\right](\mathrm{Dmp}=$ 2,6-Mes ${ }_{2} \mathrm{C}_{6} \mathrm{H}_{3}$) which produce phosphoranylidenephosphines $\mathrm{DmpP}=\mathrm{PR}_{3}(\mathrm{R}=\mathrm{Me}$ or Bu$) .{ }^{3}$ Phosphoranylidenephosphines are formally the products of phosphinidene transfer to phosphines. ${ }^{4}$ These novel materials contain PP multiple bonding of a very differing nature, as exemplified by the following resonance forms:

$$
\mathrm{ArP}=\mathrm{PR}_{3} \leftrightarrow \mathrm{Ar} \overline{\mathrm{P}}-\stackrel{+}{\mathrm{P}} \mathrm{R}_{3}
$$

Similar resonance forms are commonly drawn for Wittig reagents $\mathrm{R}_{2} \mathrm{C}=\mathrm{PR}_{3}$, and the nature of the bonding between the P and C atoms in these species has been reviewed. ${ }^{5}$ Bearing such a close kinship to Wittig reagents, it was anticipated that phosphoranylidenephosphines could act as potential 'phosphaWittig' reagents by reacting with aldehydes to generate phosphaalkenes $\mathrm{RP}=\mathrm{C}(\mathrm{H}) \mathrm{R}$ [eqn. (1)]. Several transition metal containing systems have been reported that accomplish similar transformations. ${ }^{6-8}$ Herein we present the reactivity of the phosphoranylidenephosphines $\mathrm{DmpP}=\mathrm{PMe}_{3} \quad 1 \mathbf{1 a}$ and Mes* $\mathrm{P}=\mathrm{PMe}_{3} \mathbf{1 b}$ with aldehydes to generate phosphaalkenes.

Compounds 1a and 1b are conveniently prepared by reduction of either DmpPCl_{2} or Mes* PCl_{2} with Zn dust in the presence of excess PMe_{3} in $88-95 \%$ yields [$\mathbf{1 a}:{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right), \delta-2.8,-114.7\left(J_{\mathrm{PP}} 582 \mathrm{~Hz}\right) ; \mathbf{1 b}:{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right), \delta$ 4.7, $-134.0\left(J_{\mathrm{PP}} 581 \mathrm{~Hz}\right) \cdot{ }^{3} \ddagger$ In the absence of air and water, compounds 1a, \mathbf{b} are stable yellow crystalline solids. Both 1a and $\mathbf{1 b}$ slowly decompose in solution to lose PMe_{3} and form DmpP=PDmp and Mes*P=PMes*, respectively (days to weeks). ${ }^{9}$
Reactions of $\mathbf{1 a}$ and $\mathbf{1 b}$ with $\mathrm{C}=\mathrm{O}$ containing molecules were thus examined. A series of para-substituted benzaldehydes reacted with 1a, \mathbf{b} in THF to produce the desired phosphaalkenes in excellent isolated yields (Table 1). Work-up involves removal of THF and extraction of the phosphaalkene into hexanes to remove the relatively insoluble $\mathrm{O}=\mathrm{PMe}_{3}$. Reaction times, as well as product yields, varied with the nature of the substituent; the most electron releasing substituents required the longest reactions times ($2-24 \mathrm{~h}$) and provided the lowest yields. Each reaction produced a single isomer of the phosphaalkene, and the ${ }^{2} J_{\mathrm{PH}}$ coupling constants ($24-25 \mathrm{~Hz}$) are consistent with an assignment of E-isomers for the products. ${ }^{10} \S$
Our new protocol can be contrasted to multistep procedures utilizing sterically hindered primary phosphines such as

Mes $* \mathrm{PH}_{2}$. For example, compound 2b has been prepared in 80% yield after purification by chromatography [eqn. (2)]. ${ }^{10}$ The primary phosphine Mes* PH_{2} is obtained by LiAlH_{4} reduction of $\mathrm{Mes}^{*} \mathrm{PCl}_{2}$ and isolated in 80% yield after recrystallization. ${ }^{11}$ Our procedure thus represents not only a saving in time but also of material due to phosphaalkene access from the more readily available dichlorophosphine precursors. A more dramatic advance in the utility of the current reaction was realized by the discovery that compounds $\mathbf{1 a}$ and $\mathbf{1 b}$ can be generated and used in situ. For example, reaction of DmpPCl_{2}, benzaldehyde, zinc dust and excess PMe_{3} gives an isolated yield of 95% of $\mathrm{DmpP}=\mathrm{C}(\mathrm{H}) \mathrm{Ph}$. Likewise, Mes* $\mathrm{P}=\mathrm{C}(\mathrm{H}) \mathrm{Ph}$ is obtained in 87% yield from Mes $* \mathrm{PCl}_{2}$ under the same conditions.

The scope of the phosphaalkene forming reactions using 1a was also investigated. Pentafluorobenzaldehyde, ferrocenecarboxaldehyde and pivaldehyde provided phosphaalkenes $\mathbf{7 a}-9 \mathbf{a}$ in good yields, demonstrating the remarkable tolerance of the phosphoranylidenephosphines to varying functional groups. Reactions of $\mathbf{1 a}$ with ketones proved more problematic,

Table 1 Reactions of aldehydes to give phosphaalkenes

however. Acetophenone, benzophenone and cyclohexanone showed no evidence of phosphaalkene formation and yielded extensive amounts of $\mathrm{DmpP}=\mathrm{PDmp}$ over time.

Effords to extend the reactivity of phosphoranylidenephosphines to systems having less steric hindrance than Dmp or Mes* have been partially successful. Attempts to isolate TripP $=\mathrm{PMe}_{3}\left(\right.$ Trip $\left.=2,4,6-\mathrm{Pr}_{3}{ }_{3} \mathrm{C}_{6} \mathrm{H}_{2}\right)$ by reduction of TripPCl ${ }_{2}$ with Zn dust in the presence of PMe_{3} resulted in rapid formation of (TripP) $)^{12}$ Addition of benzaldehyde, however, to such reactions results in mixtures of (TripP) 3_{3} and TripP=C(H)Ph $\left\{{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right), \delta 254.7 ;{ }^{1} \mathrm{H}\right.$ NMR, $\delta 8.99[\mathrm{TripP}=\mathrm{C}(H) \mathrm{Ph}, \mathrm{d}$, $\left.\left.J_{\mathrm{HP}} 25.6 \mathrm{~Hz}\right]\right\}$, suggesting the presence of a transient TripP $=\mathrm{PMe}_{3}$ capable of effecting phosphaalkene formation.

Reactions of phosphoranylidenephosphines with aldehydes would be of greater synthetic value if the more readily handled (and cheaper) PPh_{3} could replace PMe_{3} in these reactions. Unfortunately, efforts to prepare $\mathrm{DmpP}=\mathrm{PPh}_{3}$ by reduction of DmpPCl_{2} with Zn in the presence of PPh_{3} resulted in isolation of $\mathrm{DmpP}=\mathrm{PDmp}$. Attempts to generate $\mathrm{DmpP}=\mathrm{PPh}_{3}$ in situ for reaction with benzaldehyde also failed. Exchange of the PMe_{3} unit in $\mathbf{1 a}$ with added PPh_{3} also proved futile. The PMe_{3} groups in 1a and 1b do undergo exchange with certain non-hindered trialkylphosphines in solution. For example, 1a and 1b react quickly with PBu_{3} to produce mixtures of $\mathbf{1 a}, \mathrm{PMe}_{3}$ and $\mathrm{DmpP}=\mathrm{PBu}_{3}\left[\mathbf{1 c},{ }^{31} \mathrm{P} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right), \delta 24.1,-151.3\left(J_{\mathrm{PP}} 589\right.\right.$ $\mathrm{Hz})]$ and mixtures of $\mathbf{1 b}, \mathrm{PMe}_{3}$ and $\mathrm{Mes} * \mathrm{P}=\mathrm{PBu}_{3}\left[\mathbf{1 d},{ }^{31} \mathrm{P}\right.$ $\left.\operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right), \delta 19.9,-153.7\left(J_{\mathrm{PP}} 612 \mathrm{~Hz}\right)\right]$, respectively. ${ }^{13,14}$ Compound 1c can also be generated in situ (as above) from PBu_{3} and DmpPCl_{2}, which in the presence of benzaldehyde yields the phosphaalkene $\mathrm{DmpP}=\mathrm{C}(\mathrm{H}) \mathrm{Ph}$ and $\mathrm{O}=\mathrm{PBu}_{3}$ in good yields. Work-up, however, requires more effort than the PMe_{3} system due to the decreased volatility of PBu_{3}.
In conclusion, we have demonstrated that readily prepared and isolable phosphoranylidenephosphines are apt phosphinidene carriers in phospha-Wittig reactions. Our procedure represents a significant advance for the synthesis of phosphaalkenes as it utilizes dichlorophosphines directly, rather than derived primary phosphines. High yields and functional group tolerance are further highlights of this phospha-Wittig approach. Further studies of the phosphinidene and atom transfer reactions of these conveniently prepared phosphinidene-carriers are underway.

We thank the National Science Foundation (CHE-9733412) and the Department of Chemistry (CWRU) for support of this research.

Notes and References

\dagger E-mail: jdp5@po.cwru.edu
\ddagger Compound 1a: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right), \delta 7.08\left(\mathrm{t}, 1 \mathrm{H}, J_{\mathrm{HH}} 8 \mathrm{~Hz}\right), 6.96(\mathrm{~d}, 2 \mathrm{H}$, $\left.J_{\mathrm{HH}} 8 \mathrm{~Hz}\right), 6.90(\mathrm{~s}, 4 \mathrm{H}), 2.37(\mathrm{~s}, 12 \mathrm{H}), 2.22(\mathrm{~s}, 6 \mathrm{H}), 0.58\left(\mathrm{dd}, 9 \mathrm{H},{ }^{2} J_{\mathrm{HP}}\right.$ $12 \mathrm{~Hz},{ }^{3} J_{\mathrm{HPP}} 3 \mathrm{~Hz}$). HRMS (EI) m/z calc. for $\mathrm{C}_{27} \mathrm{H}_{34} \mathrm{P}_{2} 420.2138$; found 420.2127. Compound 1a has also been structurally characterized. ${ }^{3}$ Compound 1b: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right), \boldsymbol{\delta} 7.42(\mathrm{~s}, 2 \mathrm{H}), 1.90(\mathrm{~s}, 18 \mathrm{H}), 1.36(\mathrm{~s}, 9 \mathrm{H}), 0.69$ (d, $9 \mathrm{H},{ }^{2} J_{\mathrm{HP}} 11.5 \mathrm{~Hz}$). HRMS (EI) m / z calc. for $\mathrm{C}_{21} \mathrm{H}_{38} \mathrm{P}_{2} 352.2451$; found 352.2446 .
§ Other data for phosphaalkenes: 2a: mp $162-164{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right), \delta$ $9.00\left(\mathrm{~d},{ }^{2} J_{\mathrm{HP}} 25.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.21\left(\mathrm{t}, J_{\mathrm{HH}} 8.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.16(\mathrm{~m}, 2 \mathrm{H}), 7.00$ (d, $\left.J_{\mathrm{HH}} 7.6 \mathrm{~Hz}, 2 \mathrm{H}\right), 6.78(\mathrm{~s}, 4 \mathrm{H}), 6.73(\mathrm{~m}, 1 \mathrm{H}), 2.20(\mathrm{~s}, 12 \mathrm{H}), 2.07(\mathrm{~s}, 6$ H); HRMS (EI) m / z calc. for $\mathrm{C}_{31} \mathrm{H}_{31} \mathrm{P} 434.2165$; found 434.2141. 2b: mp $149-152{ }^{\circ} \mathrm{C}$ (lit. $\left.152-153{ }^{\circ} \mathrm{C}^{10}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right), \delta 8.19\left(\mathrm{~d},{ }^{2} J_{\mathrm{HP}} 25.4 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 7.64\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{HP}} 1.2 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.46(\mathrm{~m}, 2 \mathrm{H}), 7.00(\mathrm{~m}, 3 \mathrm{H}), 1.60(\mathrm{~s}, 18$
H), 1.35 (s, 9 H). 3a: mp 113-115 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR($\mathrm{C}_{6} \mathrm{D}_{6}$), $\delta 8.80\left(\mathrm{~d},{ }^{2} J_{\mathrm{HP}} 24.9\right.$ $\mathrm{Hz}, 1 \mathrm{H}), 7.20\left(\mathrm{t}, J_{\mathrm{HH}} 7.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.98\left(\mathrm{~d}, J_{\mathrm{HH}} 7.4 \mathrm{~Hz}, 2 \mathrm{H}\right), 6.83(\mathrm{~m}, 2 \mathrm{H})$, $6.80(\mathrm{~s}, 4 \mathrm{H}), 6.66\left(\mathrm{~d}, J_{\mathrm{HH}} 8.5 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.18(\mathrm{~s}, 12 \mathrm{H}), 2.08(\mathrm{~s}, 6 \mathrm{H}) ;$ HRMS (EI) m / z calc. for $\mathrm{C}_{31} \mathrm{H}_{30} \mathrm{PCl}$ 468.1776; found 468.1788. 3b: mp $124-126{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right), \delta 7.97\left(\mathrm{~d},{ }^{2} J_{\mathrm{HP}} 25.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.63(\mathrm{~s}, 2 \mathrm{H})$, $7.13(\mathrm{~m}, 2 \mathrm{H}), 6.96\left(\mathrm{~d}, J_{\mathrm{HH}} 8.6 \mathrm{~Hz}, 2 \mathrm{H}\right), 1.57(\mathrm{~s}, 18 \mathrm{H}), 1.35(\mathrm{~s}, 9 \mathrm{H})$; HRMS (EI) m / z calc. for $\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{PCl} 400.2089$; found 400.2086. 4a: mp $131-132{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right), \delta 8.67\left(\mathrm{~d},{ }^{2} J_{\mathrm{HP}} 24.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.40\left(\mathrm{~d}, J_{\mathrm{HH}} 8.6\right.$ $\mathrm{Hz}, 2 \mathrm{H}), 7.20\left(\mathrm{t}, J_{\mathrm{HH}} 7.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.96$ (d, $\left.J_{\mathrm{HH}} 7.7 \mathrm{~Hz}, 2 \mathrm{H}\right), 6.80(\mathrm{~s}, 4 \mathrm{H})$, $6.70(\mathrm{~m}, 2 \mathrm{H}), 2.14(\mathrm{~s}, 12 \mathrm{H}), 2.08(\mathrm{~s}, 6 \mathrm{H})$; HRMS (EI) m / z calc. for $\mathrm{C}_{31} \mathrm{H}_{30} \mathrm{PNO}_{2}$ 479.2016; found 479.2028. 4b: mp $129-131^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ $\operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right), \delta 7.83\left(\mathrm{~d},{ }^{2} J_{\mathrm{HP}} 24.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.73\left(\mathrm{~d}, J_{\mathrm{HH}} 8.8 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.62$ $(\mathrm{s}, 2 \mathrm{H}), 7.01(\mathrm{~m}, 2 \mathrm{H}), 1.52(\mathrm{~s}, 18 \mathrm{H}), 1.35(\mathrm{~s}, 9 \mathrm{H})$; HRMS (EI) m/z calc. for $\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{PNO}_{2}$ 411.2329; found 411.2329. 5a: mp $121-122{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ $\operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right), \delta 9.00\left(\mathrm{~d},{ }^{2} J_{\mathrm{HP}} 24.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.22\left(\mathrm{t}, J_{\mathrm{HH}} 7.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.11$ $(\mathrm{m}, 2 \mathrm{H}), 7.02\left(\mathrm{~d}, J_{\mathrm{HH}} 7.6 \mathrm{~Hz}, 2 \mathrm{H}\right), 6.81(\mathrm{~s}, 4 \mathrm{H}), 6.34\left(\mathrm{~d}, J_{\mathrm{HH}} 8.6 \mathrm{~Hz}, 2 \mathrm{H}\right)$, $3.04(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{~s}, 12 \mathrm{H}), 2.09(\mathrm{~s}, 6 \mathrm{H})$; HRMS (EI) m / z calc. for $\mathrm{C}_{32} \mathrm{H}_{33} \mathrm{PO} 464.2271$; found 464.2260 . 5b: mp 164- $166{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta$ $8.20\left(\mathrm{~d},{ }^{2} J_{\mathrm{HP}} 25.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.66\left(\mathrm{~d},{ }^{4} J_{\mathrm{HP}} 1 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.41(\mathrm{~m}, 2 \mathrm{H}), 6.44$ (d, $J_{\mathrm{HH}} 8.4 \mathrm{~Hz}, 2 \mathrm{H}$), $3.20(\mathrm{~s}, 3 \mathrm{H}), 1.64(\mathrm{~s}, 18 \mathrm{H}), 1.37(\mathrm{~s}, 9 \mathrm{H})$; HRMS (EI) m / z calc. for $\mathrm{C}_{26} \mathrm{H}_{37} \mathrm{PO} 396.2584$; found 396.2584. 6a: mp 181-183 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 9.06\left(\mathrm{~d},{ }^{2} J_{\mathrm{HP}} 24.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.22(\mathrm{~m}, 3 \mathrm{H}), 7.04\left(\mathrm{~d}, J_{\mathrm{HH}} 7.6\right.$ $\mathrm{Hz}, 2 \mathrm{H}), 6.82(\mathrm{~s}, 4 \mathrm{H}), 6.09\left(\mathrm{~d}, J_{\mathrm{HH}} 8.8 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.27$ (s, 12 H), 2.22 ($\mathrm{s}, 6$ H), $2.10\left(\mathrm{~s}, 6 \mathrm{H}\right.$); HRMS (EI) m / z calc. for $\mathrm{C}_{33} \mathrm{H}_{36} \mathrm{PN} 477.2588$; found 477.2596. 7a: mp $159-161{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right), \delta 8.73\left(\mathrm{~d},{ }^{2} J_{\mathrm{HP}} 24.9 \mathrm{~Hz}, 1\right.$ H), $7.21\left(\mathrm{t}, J_{\mathrm{HH}} 7.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.97\left(\mathrm{~d}, J_{\mathrm{HH}} 7.4 \mathrm{~Hz}, 2 \mathrm{H}\right), 6.82(\mathrm{~s}, 4 \mathrm{H}), 2.19$ $(\mathrm{s}, 12 \mathrm{H}), 2.06(\mathrm{~s}, 6 \mathrm{H})$; HRMS (EI) m / z calc. for $\mathrm{C}_{31} \mathrm{H}_{26} \mathrm{PF}_{5} 524.1694$; found 524.1704. 7b: mp $130-133{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right), \delta 7.94\left(\mathrm{~d},{ }^{2} J_{\mathrm{HP}} 24.8\right.$ $\mathrm{Hz}, 1 \mathrm{H}), 7.63\left(\mathrm{~d}, J_{\mathrm{HP}} 1.0 \mathrm{~Hz}, 2 \mathrm{H}\right), 1.58$ (s, 18 H), 1.32 (s, 9 H); HRMS (EI) m / z calc. for $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{PF}_{5} 456.2007$; found 456.2010. 8a: mp 104-106 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right), \delta 8.77\left(\mathrm{~d},{ }^{2} J_{\mathrm{HP}} 24.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.20\left(\mathrm{t}, J_{\mathrm{HH}} 7.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.96\left(\mathrm{~d}, J_{\mathrm{HH}}\right.$ $8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{~s}, 4 \mathrm{H}), 4.15(\mathrm{~m}, 2 \mathrm{H}), 3.89(\mathrm{~m}, 2 \mathrm{H}), 3.73(\mathrm{~d}, J 0.5 \mathrm{~Hz}$, $5 \mathrm{H}), 2.21(\mathrm{~s}, 12 \mathrm{H}), 2.14(\mathrm{~s}, 6 \mathrm{H})$; HRMS (EI) m / z calc. for $\mathrm{C}_{35} \mathrm{H}_{35} \mathrm{PFe}$ 542.1817; found 542.1837. 9a: mp 127-129 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right), \delta 8.37$ (d, $\left.{ }^{2} J_{\mathrm{HP}} 25.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.18\left(\mathrm{t}, J_{\mathrm{HH}} 7.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.97\left(\mathrm{~d}, J_{\mathrm{HH}} 8.1 \mathrm{~Hz}, 2 \mathrm{H}\right), 6.83$ (s, 4 H$), 2.16(\mathrm{~s}, 12 \mathrm{H}), 2.15(\mathrm{~s}, 6 \mathrm{H}), 0.79\left(\mathrm{~d},{ }^{4} J_{\mathrm{HH}} 1.9 \mathrm{~Hz}, 9 \mathrm{H}\right)$; HRMS (EI) m / z calc. for $\mathrm{C}_{29} \mathrm{H}_{35} \mathrm{P} 414.2479$; found 414.2474 .

1 M. Yoshifuji, I. Shima, N. Inamoto, K. Hirotsu and T. Higuchi, J. Am. Chem. Soc., 1981, 103, 4587.
2 L. Weber, Chem. Rev., 1992, 92, 1839.
3 E. Urnezius, S. Shah, G. P. Yap and J. D. Protasiewicz, manuscript in preparation.
4 In, Multiple Bonds and Low Coordination in Phosphorus Chemistry, ed. M. Regitz and O. J. Schere, Thieme Verlag, Stuttgart, 1990.

5 D. G. Gilheany, Chem. Rev., 1994, 94, 1339; P. V. Sudhakar and K. Lammertsma, J. Am. Chem. Soc., 1991, 113, 1899.
6 T. L. Breen and D. W. Stephan, J. Am. Chem. Soc., 1995, 117, 11 914; Organometallics, 1996, 15, 4223, 1997, 16, 365.
7 C. C. Cummins, R. R. Schrock and W. M. Davis, Angew. Chem., Int. Ed. Engl., 1993, 32, 756.
8 P. Le Floch, A. Marinetti, L. Ricard and F. Mathey, J. Am. Chem. Soc., 1990, 112, 2407; P. Le Floch and F. Mathey, Synlett., 1990, 171; P. Floch and F. Mathey, Synlett., 1991, 743.
9 E. Urnezius and J. D. Protasiewicz, Main Group Chem., 1996, 1, 369.
10 M. Yoshifuji, K. Toyota and N. Inamoto, Tetrahedron Lett., 1985, 26, 1727.

11 A. H. Cowley, N. C. Norman and M. Pakulski, Inorg. Synth., 1990, 27, 235.

12 C. N. Smit, T. A. van der Knaap and F. Bickelhaupt, Tetrahedron Lett., 1983, 24, 2031.
13 A. B. Burg, and W. Mahler, J. Am. Chem. Soc., 1961, 83, 2388.
14 A. H. Cowley and M. C. Cushner, Inorg. Chem., 1980, 19, 515.
15 K. Issleib, H. Schmidt and E. Leibring, Z. Chem., 1986, 26, 406.

Received in Bloomington, IN, USA; 14th April 1998; 8/02722F

