Total synthesis of (–)-epothilone B

Scott A. May and Paul A. Grieco*†

Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, USA

The sixteen-membered ring macrolide (–)-epothilone B 1 has been synthesized by a route which features stereospecific methylation of an (E)- γ , δ -epoxy acrylate, the use of a double asymmetric reaction employing (R,R)-diisopropyltartrate and (E)-crotylboronate, and ring closure by means of an olefin metathesis reaction.

(–)-Epothilone B **1**, isolated by Höfle and co-workers¹ from the myxobacteria *Sorangium cellulosum* strain 90, has been the object of intense synthetic activity.^{2,3} The excitement surrounding the epothilones stems, in part, from research conducted at the Merck Research Laboratories by Bollag⁴ and co-workers who demonstrated that the epothilones function *via* a paclitaxel-like mode of action by binding to and stabilizing cell microtubule assemblies. Particularly significant has been the finding⁴ that (–)-epothilone B appears to be effective against a number of drug-resistant tumor cell lines. We detail below an intramolecular olefin metathesis strategy for the construction of (–)-epothilone B which features preparation of the C(3)-C(12) fragment **2** and its elaboration into **3**, and subsequent conversion of **3** into **1**.

Synthesis of the chiral C(3)-C(12) fragment 2 commenced with the optically active epoxide 5, $[\alpha]_D^{25}$ -10.1 (c 2.5, CHCl₃), which was prepared from allylic alcohol 4^5 via a Sharpless epoxidation⁶ [diethyl L-tartrate (0.26 equiv.), Ti(O-Prⁱ)₄ (0.2 equiv.), Bu^tOOH (3.0 equiv.), CH₂Cl₂, 4 Å mol sieves, −40 °C (8 h) \rightarrow −10 °C (8 h)]. With the ready availability of 5, efforts were focused on introduction of the C(6) methyl group. Toward this end, **5** was transformed, in 87% overall yield, into the (E)- γ , δ -epoxy acrylate 6 via a Swern oxidation [DMSO, (COCl)₂, CH₂Cl₂, -78 °C, 1 h, then Et₃N, 0 °C, 1 h] and an (E)-selective Horner-Wadsworth-Emmons reaction [NaH, THF, (EtO)₂POCH₂CO₂Et, 0 °C, 1 h, then RCHO, THF, 0 °C, 30 min]. Treatment of a 0.07 M solution of 6 in 1,2-dichloroethane in the presence of 6.0 equiv. of water cooled to -30 °C with 10.0 equiv. of Me₃Al (2.0 \overline{M} in hexane) gave rise to 7 (R = H), $[\alpha]_D^{25}$ +11.7 (*c* 2.5, CHCl₃), as the sole product in 87% yield.⁷ The methylation of **6** is stereospecific, proceeding with net inversion of configuration about C(6). Note that, in the absence of water, the transformation of 6 into 7 (R = H) does not proceed to any appreciable extent.

Elaboration of the remaining two stereocenters at C(7) and C(8) necessitated conversion of substrate **7** into aldehyde **8** which was realized (95% overall yield) *via* a three step protocol

[TESOTf, 2,6-lutidine, CH₂Cl₂, 45 min, then OsO₄ (catalytic), NMO, acetone-water-ButOH (2:5:1), 7 h, followed by NaHSO₃, 14 h, then Pb(OAc)₄, C_6H_6 , 15 min]. Exposure of 8 to (R,R)-diisopropyltartrate and (E)-crotylboronate⁸ in toluene $[-78 \text{ °C} (3 \text{ h}) \rightarrow \text{room temp.} (12 \text{ h})]$ in the presence of 4 Å molecular sieves gave rise to 9, $[\alpha]_D^{25} - 8.6$ (c 2.1, CHCl₃), as the sole product in 93% yield, thus establishing the required syn,anti arrangement about C(6)-C(7) and C(7)-C(8). Prior to functionalization of the $\Delta^{9,10}$ terminal olefin, the triethylsilyl ether was cleaved (TBAF, THF, 30 min) and the resulting 1,3-anti diol was converted, upon exposure (15 min) to 2,2-dimethoxypropane and catalytic TsOH, into the 1,3-anti acetonide **10**, $[\alpha]_{D^{25}}$ +11.6 (*c* 1.7, CHCl₃), in 93% overall yield. The stereochemical assignment for the anti acetonide follows from the ¹³C NMR spectrum of 10. The observed chemical shifts for the acetonide carbons (δ 23.4, 25.7 and 100.1) in 10 are in excellent agreement with previous data from independent studies on 1,3-anti acetonides by Rychnovsky9 and Evans.10

Completion of the synthesis of the C(3)-C(12) fragment 2 was realized as follows. Hydroboration [catecholborane, (PPh₃)₃RhCl (catalytic), THF, 45 min; NaOH, H₂O₂]¹¹ of 10 followed by oxidation (Swern conditions) and subsequent Horner-Wadsworth-Emmons condensation (THF, 4 h) of the resulting aldehyde with the sodium anion derived from diethyl (2-oxopropyl)phosphonate gave rise, in 55% overall yield, to 11, $[\alpha]_{D}^{25}$ +26.0 (c 1.05, CHCl₃). Enone 11 was transformed (77% overall) into triol 12 via a three step sequence [H₂, 10% Pd/C, EtOH–EtOAc (1:1), 5 h, then $Ph_3P=CH_2$, THF, 3 h, then 1.0 M HCl-THF (1:1), 50 °C, 3 h] which set the stage for selective protection of the C(5) and C(7) hydroxy groups, which proved critical for completion of the total synthesis of epothilone B since the 1,3-diol acetonide present in 11 was not compatible with the olefin metathesis reaction in the late stages of the synthesis.

Exposure (30 min) of **12** to *p*-anisaldehyde dimethylacetal in benzene containing catalytic TsOH gave rise (90%) to **13** (R = H) which, upon silylation [TBDMSOTf, 2,6-lutidine, CH₂Cl₂, -78 °C, 4 h], provided (94%) **13** (R = TBDMS), $[\alpha]_D^{25}$ +19.7 (*c* 3.9, CHCl₃). Protection of the C(5) hydroxy group as its 4-methoxybenzyl (PMB) ether was realized *via* regioselective

Chem. Commun., 1998 1597

BnO
$$11$$

HO 5 7
OH 0
HI

reductive ring cleavage¹² of the 1,3-dioxane ring of the 4-methoxybenzylidene acetal **13** (R = TBDMS). Thus, a 0.04 M solution of **13** (R = TBDMS) in CH₂Cl₂, cooled to -78 °C, was treated with 10.0 equiv. of a 1.0 M solution of DIBAL-H in CH₂Cl₂. After warming to -15 °C (1.5 h), a 75% yield of primary alcohol **14** was isolated. Oxidation (Swern conditions) of **14** provided the intact C(3)-C(12) fragment **2**, $[\alpha]_D^{25} - 7.6$ (*c* 4.6, CHCl₃), in 98% yield.

In order to complete the total synthesis of **1**, the ester enolate derived (LDA, THF, -78 °C) from the known acetate **15**² was condensed with **2** giving rise (83%) to a readily separable mixture (1.7:1) of diastereomers favoring **16**, $[\alpha]_D^{25} - 28.6$ (*c* 1.4, CHCl₃), possessing the correct configuration at C(3). Protection [TBDMSOTf, 2,6-lutidine, CH₂Cl₂, -50 °C, 4 h] of the C(3) hydroxy group, followed by cleavage [DDQ, CH₂Cl₂-H₂O (18:1), 0 °C, 3 h] of the C(5) 4-methoxybenzyl ether and subsequent Dess–Martin oxidation gave rise to **17**, $[\alpha]_D^{25}$ -44.0 (*c* 2.4, CHCl₃), in 65% overall yield.

Ring closure to complete the formation of the sixteenmembered ring of **1** was realized by an intramolecular olefin metathesis reaction.^{13,14} Exposure (4 h) of a 0.001 M solution of **17** in benzene (heated to 55 °C) to 20 mol% of the molybdenumbased catalyst [Mo(CHMe₂Ph){N(2,6-Pri₂C₆H₃)}{OC-Me(CF₃)₂}] of Schrock¹³ afforded in 55% yield a 1 : 1 mixture of Z and E isomers (cf. **18**) which could be separated by preparative TLC. Upon treatment of the enantiomerically pure Z-isomer with HF·pyridine (THF, 3 h), a 60% yield of preepothilone B **19** was obtained. Epoxidation (dimethyldioxirane,¹⁵ CH₂Cl₂, -50 °C, 4 h) of **19** provided crystalline **1**, mp 93–94 °C (lit.,² 93.6–94.7 °C), $[\alpha]_D^{25}$ –32.2 (c 0.09, CHCl₃) [lit.,² –31.0 (c 0.045, CHCl₃)] in 86% yield. The ¹H NMR spectrum of synthetic **1** was identical in all respects with a spectrum of natural (-)-epothilone B.

We thank Professor S. Danishefsky for helpful discussions and the ¹H NMR spectra of natural (-)-1 and synthetic (-)-17. This research was supported by a grant from the U.S. NIH (CA 28865).

Notes and References

† E-mail: grieco@chemistry.montana.edu

- 1 G. Höfle, N. Bedorf, H. Steinmetz, D. Schomburg, K. Gerth and H. Reichenbach, Angew. Chem., Int. Ed. Engl., 1996, 35, 1567.
- 2 D. Meng, P. Bertinato, A. Balog, D.-S. Su, T. Kamenecka, E. J. Sorensen and S. J. Danishefsky, *J. Am. Chem. Soc.*, 1997, **119**, 10073 and references cited therein.
- 3 K. C. Nicolaou, S. Ninkovic, F. Sarabia, D. Vourloumis, Y. He, H. Vallberg, M. R. V. Finlay and Z. Yang, J. Am. Chem. Soc., 1997, 119, 7974.
- 4 D. M. Bollag, P. A. McQueney, J. Zhu, O. Hensens, L. Koupal, J. Liesch, M. Goetz, E. Lazarides and C. M. Woods, *Cancer Res.*, 1995, 55, 2325.
- 5 M. A. Blanchette, M. S. Malamas, M. H. Nantz, J. C. Roberts, P. Somfai, D. C. Whritenour, S. Masamune, M. Kageyama and T. Tamura, *J. Org. Chem.*, 1989, 54, 2817.
- T. Katsuki and K. B. Sharpless, J. Am. Chem. Soc., 1980, 102, 5974.
 M. Miyashita, M. Hoshino and A. Yoshikoshi, J. Org. Chem., 1991, 56, 6483;
 M. Miyashita, K. Yoshihara, K. Kawamine, M. Hoshino and H. Irie, *Tetrahedron Lett.*, 1993, 39, 6285;
 M. Miyashita, T. Shiratani, K. Kawamine, S. Hatakeyama and H. Irie, *Chem. Commun.* 1996, 1027;
- R. A. Grieco, J. D. Speake, S. K. Yeo and M. Miyashita, *Tetrahedron Lett.*, 1998, **39**, 1125.
 W. B. Bouch, V. Ando, D. B. Boucore, A. D. Balkowitz, and B. J.
- 8 W. R. Roush, K. Ando, D. B. Powers, A. D. Palkowitz and R. L. Halterman, J. Am. Chem. Soc., 1990, **112**, 6339; W. R. Roush, A. D. Palkowitz and K. Ando, J. Am. Chem. Soc., 1990, **112**, 6348.
- 9 S. D. Rychnovsky and D. J. Skalitzky, *Tetrahedron Lett.*, 1990, **31**, 945.
- 10 D. A. Evans, D. L. Rieger and J. R. Gage, *Tetrahedron Lett.*, 1990, **31**, 7099.
- 11 D. Männig and H. Nöth, Angew. Chem., Int. Ed. Engl., 1985, 24, 878; D. A. Evans, G. C. Fu and A. H. Hoveyda, J. Am. Chem. Soc., 1992, 114, 6671.
- 12 S. Takano, M. Akiyama, S. Sato and K. Ogasawara, *Chem. Lett.*, 1983, 1593.
- 13 R. R. Schrock, J. S. Murdzek, G. C. Bazan, J. Robbins, M. DiMare and M. O'Regan, J. Am. Chem. Soc., 1990, 112, 3875.
- 14 P. Schwab, M. B. France, J. W. Ziller and R. H. Grubbs, *Angew. Chem.*, *Int. Ed. Engl.*, 1995, **34**, 2039. Also See: A. Houri, Z. Xu, D. A. Cogan and A. H. Hoveyda, *J. Am. Chem. Soc.*, 1995, **117**, 2943.
- 15 R. W. Murray and R. Jeyaraman, J. Org. Chem., 1985, 50, 2847.

Received in Corvallis, OR, USA, 20th April 1998; 8/02947D