Chromium(III) complexes bearing N,N-chelate ligands as ethene polymerization catalysts

Vernon C. Gibson,^{*a}[†] Peter J. Maddox,^b Claire Newton,^a Carl Redshaw,^a Gregory A. Solan,^a Andrew J. P. White^a and David J. Williams^a

^a Department of Chemistry, Imperial College, Exhibition Road, London, UK SW7 2AY

^b BP Chemicals, Sunbury Research Centre, Chertsey Road, Sunbury on Thames, Middlesex, UK TW16 7LN

Novel chromium(m) ethene polymerization catalysts bearing bulky monoanionic N,N-chelate ligands are described.

Chromium supported on silica plays a central role in the worldwide production of polyethylene.¹ As heterogeneous catalysts they have not proved amenable to intimate study, and even to this day there remains an on-going debate about the oxidation state of the active chromium centres.² The development of homogeneous molecular chromium catalysts is therefore an important objective, since these offer the potential for understanding the *modus operandi* of supported chromium catalysts and may provide new opportunities for tuning activity and selectivity. A number of reports of molecular chromium catalysts have appeared in the recent literature,^{3–6} the majority on halfsandwich chromium species as models for the active sites of chromocene-derived systems.^{3,4}

Here we describe a series of coordinatively unsaturated chromium(III) ethene polymerization procatalysts bearing either β -diketimate or pyrrolide-imine ligands. A general feature of these ligands is the presence of bulky aryl substituents which offer protection to the active centre, a strategy that has proved successful for the stabilisation of new N,N-chelate catalysts based on early⁷ and late transition metal systems.⁸ A similar strategy has also recently been applied to a new catalyst system based on iron and cobalt.⁹

The chromium chloride complexes, **1** and **3**, were prepared in high yield by the treatment of $[CrCl_3(thf)_3]$ with the lithium salts of the β -diketimate ligand or the pyrrolide-imine ligand, respectively (Scheme 1).[‡] The structures of **1** and **3** were confirmed by X-ray structure determinations.¹⁰ Interestingly, only one β -diketimate ligand can be coordinated to chromium in **1**, while in **3** the less sterically demanding pyrrolide-imine ligand allows bis-chelation. It is also of note that the vacant sixth coordination site in **3** is unexpectedly occupied by a molecule of lithium chloride (as a thf solvate).

Complex **2**, the dimethyl derivative of **1**, has been prepared in good yield by treatment of **1** with trimethylaluminium (TMA). Crystals of **2** suitable for an X-ray structure determination§ were grown from a concentrated pentane solution. The structure is dimeric, the two crystallographically independent molecules both having C_{2h} symmetry and comprising in each case two slightly distorted square pyramidal Cr^{III} centres linked by chloride bridges, the remaining basal sites being occupied by bidentate β -diketimate ligands (Fig. 1). The apical position on each chromium centre is filled by a terminal methyl group with Cr–C distances of 2.037(7) and 2.042(8) Å for the two independent molecules. The 2,6-diisopropylphenyl rings are oriented almost orthogonally (*ca.* 87°) with respect to the basal plane.

In a similar way, complex **4** was obtained by treatment of **3** with TMA (Scheme 1). Crystals of **4** suitable for X-ray analysis were grown from a concentrated light petroleum (bp 40–60 °C) solution. The structure again reveals a five-coordinate square pyramidal Cr^{III} centre, this time coordinated basally to two chelating pyrrolide-imine ligands and apically to a terminal methyl group at 2.037(9) Å (Fig. 2). The complex has

crystallographic C_2 symmetry about an axis passing through the Cr–Me bond, and the two independent Cr–N distances differ significantly, with that to the pyrrolide [2.026(5) Å] markedly shorter than that to the imine [2.073(4) Å] reflecting the formal anionic nature of N(1). The double bond character of the imine has been retained [1.318(7) Å] though there is some evidence for delocalisation between the imine and pyrrolide systems, C(5)–C(6) being short at 1.410(8) Å. As in **2**, the 2,6-diisopropylphenyl rings are steeply inclined (*ca.* 65°) to the basal plane. It is noteworthy that both of these structures provide rare examples of five-coordinate chromium(III) alkyls, only two other examples having been found on the CCDC database [to March 1998, 175 093 entries].¹¹

A summary of the ethene polymerization tests for **1–4** is shown in Table 1. Solid polyethylene is obtained in all cases with samples displaying high molecular weights¶ and virtually no branching (by NMR). A comparison of the polymerisation runs 1–12 shows that similar activities are found for procatalysts bearing either β -diketimate (**1** and **2**) or pyrrolide-imine ligands (**3** and **4**), the highest activity being 75 g mmol⁻¹h⁻¹bar⁻¹ using **1** and diethylaluminium chloride (Et₂AlCl) activator (see run 2).

The nature of the activator is seen to have an important influence on activity; for example, alkylaluminium chloride activators are found to be more compatible with these

Scheme 1 Preparation of chromium complexes 1–4. *Reagents and conditions*: i, BuⁿLi, -78 °C, thf; ii, [CrCl₃(thf)₃], -78 °C, thf; iii, AlMe₃, thf.

Fig. 1 The molecular structure of **2**. Selected bond lengths (Å) and angles (°) (values for the second independent molecule are in square brackets); Cr–Me 2.037(7) [2.042(8)], Cr–N 2.028(4) [2.031(4)], Cr–Cl 2.395(1) [2.393(1)]; Me–Cr–N 95.4(2) [96.8(2)], Me–Cr–Cl 97.8(2) [96.8(2)], N–Cr–N' 91.3(2) [90.8(2)], Cl–Cr–Cl' 80.3(1) [80.6(1)], N–Cr–Cl 92.7(1) [92.7(1)], N–Cr–Cl' 165.7(1) [165.4(1)], Cr–Cl-Cr' 99.7(1) [99.4(1)]. The transannular Cr···Cr distance is 3.66 Å [3.65 Å] and the chromium atom lies 0.25 Å [0.26 Å] out of its basal plane.

Fig. 2 The molecular structure of **4**. Selected bond lengths (Å) and angles (°); Cr–Me 2.037(9), Cr–N(1) 2.026(5), Cr–N(7) 2.073(4), C(5)–C(6) 1.410(8), C(6)–N(7) 1.318(7); Me–Cr–N(1) 93.4(2), Me–Cr–N(7) 100.4(1), N(1)–Cr–N(7) 80.9(2), N(1)–Cr–N(7') 97.9(2), N(1)–Cr–N(1') 173.2(4), N(7)–Cr–N(7') 159.2(3).

Table 1 Results of ethene polymerisation runs using procatalysts 1-4^a

Run	Proctalyst (0.015 mmol)	Activator ^b (mmol/equiv.)	Yield PE ^c /g	Activity ^d / g mmol ⁻¹ h ⁻¹ bar ⁻¹
1	1	MAO (6.0/400)	0.12	4
2	1	Et ₂ AlCl (0.45/30)	2.25	75
3	1	Et ₂ AlCl·EtAlCl ₂ (0.3/20)	0.69	23
4	2	MAO (6.0/400)	0.15	10
5	2	Et ₂ AlCl (0.45/30)	0.80	54
6	2	Et ₂ AlCl·EtAlCl ₂ (0.3/20)	0.48	32
7	3	MAO (6.0/400)	0.08	5
8	3	Et ₂ AlCl (0.45/30)	1.04	69
9	3	$Et_2AlCl \cdot EtAlCl_2$ (0.45/30)	0.40	27
10	4	MAO (6.0/400)	0.04	3
11	4	Et ₂ AlCl (0.45/30)	1.05	70
12	4	$Et_2AlCl \cdot EtAlCl_2 (0.45/30)$	0.23	15

^{*a*} General conditions: 1 bar ethene Schlenk test carried out in toluene (40 cm³) at 25 °C, over 60 min, reaction quenched with dil. HCl and the solid PE washed with methanol (50 cm³) and dried in a vacuum oven at 40 °C. ^{*b*} MAO = methylaluminoxane. ^{*c*} Solid polyethylene. ^{*d*} Activity reported per chromium centre.

procatalysts than methylaluminoxane (MAO). Moreover, diethylaluminium chloride (Et_2AlCl) is superior to aluminium sesquichloride (Et_2AlCl ·EtAlCl₂). Notably, the alkyl procatalysts **2** and **4** are inactive in the absence of activator.

The new catalyst types described herein represent a notable addition to the limited list of non-cyclopentadienyl chromium ethene polymerization catalysts^{5,6} and highlight the importance of the choice of co-catalyst for optimal catalyst performance.

BP Chemicals Ltd is thanked for financial support. Dr W. Reed and Dr J. Boyle are thanked for GPC and NMR measurements, respectively.

Notes and References

† E-mail: V.Gibson@ic.ac.uk

‡ Satisfactory elemental analyses have been obtained.

¶ As a representative example, GPC analysis of the polyethylene obtained from run 8 afforded $M_w = 293,000, M_n = 113,000; M_w/M_n 2.2$. Care should be taken in the interpretation of these values, however, since in general the polymers derived from these polymerisations are not fully soluble in the 1,2,4-trichlorobenzene GPC solvent, even upon heating at 160 °C for several hours.

§ Crystal data: for 2: $C_{60}H_{88}Cl_2Cr_2N_4$.0.5 C_5H_{12} , M = 1076.3, monoclinic, space group C2/m (no. 12), a = 19.434(3), b = 21.764(2), c = 15.098(2)Å, $\beta = 90.58(1)^\circ$, U = 6386(1) Å³, Z = 4 (there are two crystallographically independent C_{2h} symmetric molecules in the asymmetric unit), $D_c = 1.120$ g cm⁻³, μ (Cu-K α) = 38.5 cm⁻¹, F(000) = 2316. A crimson prismatic needle of dimensions $0.33 \times 0.17 \times 0.13$ mm was used. For 4: $C_{35}H_{45}CrN_4,$ M = 573.8, orthorhombic, space group Fdd2 (no. 43), a = 20.280(2), b = 34.103(4), c = 9.420(1) Å, U = 6515(2) Å³, Z = 8 (the molecule has crystallographic C_2 symmetry), $D_c = 1.170$ g cm⁻³, μ (Mo-K α) = 3.79 cm⁻¹, F(000) = 2456. A green block of dimensions $0.37 \times 0.37 \times 0.10$ mm was used. 4866 (1530) independent reflections were measured at 203 K on Siemens P4(PC) diffractometers with Cu-Ka-rotating anode source-(Mo-K α) radiation using ω -scans for 2 (4), respectively. The structures were solved by direct methods and all of the major occupancy non-hydrogen atoms were refined anisotropically using full matrix least squares based on F^2 to give $R_1 = 0.065$ (0.049), $wR_2 = 0.164$ (0.094) for 3370 (1193) independent observed reflections $[|F_o| > 4\sigma(|F_o|), 2\theta \le 120(50^\circ)]$ and 340 (182) parameters for 2 (4), respectively. The polarity of 4 was determined by a combination of *R*-factor tests $[R_{1^+} = 0.048, R_{1^-} = 0.050]$ and by use of the Flack parameter $[x^+ = 0.10(1), x^- = 0.90(1)]$. CCDC 182/903.

- F. J. Karol, G. L. Garapinka, C. Wu, A. W. Dow, R. N. Johnson and W. I. Carrick, *J. Polym. Sci., Part A*, 1972, **10**, 2621; J. P. Hogan, *J. Polym. Sci., Part A*, 1972, **8**, 2637.
- 2 M. P. McDaniel, Adv. Catal., 1985, 33, 47; J. A. N. Ajjou, S. L. Scott and V. Paquet, J. Am. Chem. Soc., 1998, 120, 415.
- 3 For recent reviews, see: K. H. Theopold, *Chem. Eur. J.*, 1998, **3**, 15; K. H. Theopold, *CHEMTECH*, 1997, **27**, 26.
- 4 R. Emrich, O. Heinemann, P. W. Jolly, C. Krüger and G. P. J. Verhovnik, *Organometallics*, 1997, **16**, 1511.
- 5 F. J. Feher and R. L. Blanski, J. Chem. Soc., Chem. Commun., 1990, 1614.
- 6 M. P. Coles, C. I. Dalby, V. C. Gibson, W. Clegg and M. R. J. Elsegood, J. Chem. Soc., Chem. Commun., 1995, 1709.
- 7 J. D. Scollard and D. H. McConville, *J. Am. Chem. Soc.*, 1996, **118**, 10008; V. C. Gibson, B. S. Kimberley, A. J. P. White, D. J. Williams and P. Howard, *Chem. Commun.*, 1998, 313.
- 8 L. K. Johnson, C. M. Killian and M. Brookhart, J. Am. Chem. Soc., 1995, 117, 6414; L. K. Johnson, S. Meeking and M. Brookhart, J. Am. Chem. Soc., 1996, 118, 267; C. M. Killian, D. J. Tempel, L. K. Johnson and M. Brookhart, J. Am. Chem. Soc., 1996, 118, 11664; L. K. Johnson, C. M. Killian, S. D. Arthur, J. Feldman, E. F. McCord, S. J. McLain, K. A. Kreutzer, M. A. Bennett, E. B. Coughlin, S. D. Ittel, A. Parthasarathy, D. J. Tempel and M. S. Brookhart, Pat. Appl., WO 96/23010, 1996, DuPont.
- 9 G. J. P. Britovsek, V. C. Gibson, B. S. Kimberley, P. J. Maddox, S. J. McTavish, G. A. Solan, A. J. P. White and D. J. Williams, *Chem. Commun.*, 1998, 849; B. L. Small, M. Brookhart and M. A. Bennett, *J. Am. Chem. Soc.*, 1998, **120**, 4049.
- 10 X-Ray data for **1** and **3** will be published elsehwere.
- 11 M. D. Fryzuk, D. B. Leznoff and S. J. Rettig, *Organometallics*, 1997, 16, 5116; Y. Liang, G. P. A. Rheingold and K. H. Theopold, *Organometallics*, 1996, 15, 5284.

Received in Exeter, UK, 14th April 1998; 8/02797H