Takumi Konno,*a[†] Keiji Tokuda^a and Ken-ichi Okamoto^b

^a Department of Chemistry, Faculty of Engineering, Gunma University, Kiryu, Gunma, 376, Japan ^b Department of Chemistry, University of Tsukuba, Tsukuba, Ibaraki 305, Japan

Reaction of the S-bridged Co^{III}₂Ag^I₃ pentanuclear complex, [Ag^I₃{Co^{III}(aet)₃}₂]³⁺ (1; aet = NH₂CH₂CH₂CF₂S⁻), with paraformaldehyde in basic acetonitrile, followed by adding aqueous ammonia, produces the aza-capped complex, [Ag^I₃-{Co^{III}(L)}₂]³⁺ [2; L = N(CH₂NHCH₂CH₂S⁻)₃], in which two Co^{III} atoms are encapsulated in a macrobicyclic cage consisting of two aza-capped ligands L and three Ag^I atoms; 2 is converted to the aza-capped Co^{III}₄Zn^{II}₄ octanuclear complex, [Zn^{II}₄O{Co^{III}(L)}₄]⁶⁺, by the reaction with I⁻ in the presence of ZnO and Zn²⁺ in water, retaining the chiral configuration of the aza-capped [Co^{III}(L)] units.

Since the discovery of the formation of the aza-capped cage complex, [Co(sepulchrate)]³⁺, by the facile condensation of formaldehyde and ammonia with $[Co(en)_3]^{3+}$ (en = NH₂CH₂CH₂NH₂),¹ similar preparative techniques have been applied to obtain analogous metal complexes with a macrobicyclic cage, which exhibit unique stereochemical and redox properties.^{2–10} The cage complexes of this type have been derived from mononuclear metal complexes and thus contain only one metal ion. In order to expand the co-ordination chemistry of metal ions encapsulated in a macrobicyclic cage, it is desirable to introduce two or more metal ions in one cage. We report here the synthesis and structure of a new class of macrobicyclic cage complex encapsulating two cobalt(III) ions, $[Ag_3\{Co(L)\}_2]^{3+}$ [L = N(CH₂NHCH₂CH₂S⁻)₃], together with its conversion to the $Co^{III}_4Zn^{II}_4$ octanuclear complex, [Zn₄O- $\{Co(L)\}_4]^{6+}$.

Treatment of a dark purple acetonitrile solution of the S-bridged Co^{III}₂Ag^I₃ pentanuclear complex, $[Ag_3 \{Co(aet)_3\}_2](BF_4)_3 \cdot H_2O$ $[1(BF_4)_3 \cdot H_2O;$ aet NH₂CH₂CH₂S⁻],¹¹ with paraformaldehyde and triethylamine at room temperature gave a dark red solution, which turned dark purple upon the addition of aqueous ammonia. A dark purple powder $[2(NO_3)_3 \cdot 4H_2O]$ was isolated from the dark purple reaction solution by adding an aqueous solution of $NaNO_3(80\%)$ yield).[‡] The absorption spectrum of **2** is quite similar to that of 1 over the whole region. In the ¹³C NMR spectrum 2 gives three sharp signals at δ 34.64, 61.62, and 69.76, which is distinct from the two ¹³C NMR signals at δ 36.64 and 51.41 observed for 1.¹¹ From these facts and elemental analysis, it is assumed that 2 has an aza-capped Co^{III}₂Ag^I₃ pentanuclear structure in $[Ag_{3}\{Co(L)\}_{2}]^{3+}$ [L = N(CH₂NHCH₂CH₂S⁻)₃]. 2 was optically resolved into its enantiomers, $(+)_{580}^{CD}$ and $(-)_{580}^{CD}$, by SP-Sephadex C-25 column chromatography using $[Sb_2(R, R-tar$ trato)₂ $|^{2-}$ as eluent. The CD spectrum of $(-)_{580}^{CD}$ -2 corresponds well with that of the $\Delta\Delta$ isomer of **1**, which implies that the two [Co(L)] units in $(-)_{580}^{CD}$ -2 have the Δ configuration.

The structure of **2** was established by a single crystal X-ray analysis of the PF₆⁻ salt [**2**(PF₆)₃·H₂O], which was prepared by adding an aqueous solution of NaPF₆ to the aqueous solution of **2**(NO₃)₃·4H₂O.§ The total occupancy factor of the PF₆⁻ anions implies that the entire complex cation **2** is trivalent. As shown in Fig. 1, the entire complex cation **2** contains two Co^{III} and three Ag^I atoms. Each Co^{III} atom is surrounded by an azacapped hexadentate N₃S₃ ligand L to form an approximately octahedral [Co^{III}(L)] unit. The two [Co^{III}(L)] units are spanned by three Ag^I atoms, such that the three S-Ag-S linkages form a triple helical structure. As a result, the two CoIII atoms are encapsulated in a macrobicyclic metallo-cage, [AgI₃(L)₂]³⁻, in which each of three AgI atoms is linearly coordinated by two S atoms from two aza-capped ligands L. Except for the presence of the two terminal aza caps, the overall structure of 2 is similar to that of the parent complex $1.^{11}$ In particular, the bond distances and angles around the CoIII atoms in 2 [average Co-S = 2.243(8) Å, Co–N = 2.02(3) Å, S–Co–S $= 91.3(3)^{\circ}$, N–Co– $N = 89(1)^{\circ}$ are in good agreement with those in 1 [average Co-S = 2.248(8) Å, Co–N = 2.03(3) Å, S–Co–S = 92.1(3)°, N–Co–N = 90(1)°]. However, the averaged Ag–S distance in 2 [2.417(8) Å] is ca. 0.04 Å longer than that found in **1** [2.378(8) Å]. Moreover, the S–Ag–S angles [average 177.9(4)°] in 2 are closer to 180° than those in 1 [average 174.6(3)°], which permits the slightly shorter Ag...Ag separations in 2 [average 2.956(4) Å], compared with the separations in 1 [average 3.029(3) Å].

The two [Co(L)] units in 2 have the same chiral configuration to form the $\Delta\Delta$ and $\Lambda\Lambda$ isomers; the former isomer is illustrated in Fig. 1. This is compatible with the fact that 2 was optically resolved into its enantiomers. In the crystal lattice the $\Delta\Delta$ and $\Lambda\Lambda$ isomers co-exist in a disordered manner with a site occupancy of 0.5, which indicates that crystal 2 is not a racemic compound but a solid solution.¹² All the six bridging S atoms are fixed to the *S* configuration for the $\Delta\Delta$ isomer and *R* for the $\Lambda\Lambda$ isomer. The helical structure due to three S–Ag–S linkages is left-handed for the $\Delta\Delta$ isomer and right-handed for the $\Lambda\Lambda$ isomer. These stereochemical properties are the same as those in 1.11 However, it should be noted that in 2 all the five-membered N,S-chelate rings adopt the lel conformation, which is in contrast to the fact that the ob conformation as well as the lel one has been found in **1**. All the six asymmetric N atoms in **2** have the R configuration for the $\Delta \Delta$ isomer and S for the $\Lambda \Lambda$ isomer.

Attempts to fit the S-bridged $\text{Co}^{III}_4\text{Zn}^{II}_4$ octanuclear complex, $[\text{Zn}_4\text{O}\{\text{Co}(\text{aet})_3\}_4]^{6+,13}$ with aza caps by a similar condensation reaction were unsuccessful, because of the decomposition of $[\text{Zn}_4\text{O}\{\text{Co}(\text{aet})_3\}_4]^{6+}$ in basic conditions. Instead, the corresponding aza-capped complex, $[\text{Zn}^{II}_4\text{O}\{\text{Co}^{III}(L)\}_4]^{6+}$ (3), was successfully derived from 2 (Scheme 1). That is, treatment of 2 with a stoichiometric amount of NaI in the presence of excess ZnO and Zn(NO_3)_2·6H_2O in water at

Fig. 1 A perspective view of the complex cation 2 (the $\Delta\Delta$ isomer) with the atomic labeling scheme. The overlapped $\Lambda\Lambda$ isomer is omitted for clarity

Chem. Commun., 1998 1697

Scheme 1 Conversion of the $Co^{III}_2AgI_3$ pentanuclear structure in 2 to the $Co^{III}_4ZnII_4$ octanuclear structure in 3

room temperature gave a dark blue-purple solution, from which a black powder $[3(ClO_4)_6, 7H_2O]$ was isolated by adding an aqueous solution of NaClO₄ (50% yield). Compound 3 was characterized by (i) elemental and plasma emission spectral analyses, (ii) electronic absorption spectroscopy, the spectral features of which coincide well with that of $[Zn_4O-\{Co(aet)_3\}_4]^{6+},$ and (iii) ^{13}C NMR spectroscopy which gives three sharp signals at δ 32.63, 61.15, and 69.51. The cyclic voltammogram of **3** at a glassy-carbon electrode in a 0.2 mol dm⁻³ aqueous NaNO₃ solution yields four consecutive redox couples (E = -0.43, -0.55, -0.62, and -0.75 V vs. Ag/AgCl, 100 mV s⁻¹). Similar redox behavior is characteristically observed for $[M_4O{Co(aet)_3}_4]^{6+}$ (M = Zn, Hg) having a *T*-symmetrical $Co^{III}_4M^{II}_4$ octanuclear structure.^{13,14} Thus, it is confirmed that 3 has the S-bridged $Co^{III}_4Zn^{II}_4$ octanuclear structure in $[Zn^{II}_4O{Co^{III}(L)}_4]^{6+}$. Compound **3** was optically resolved into its enantiomers, $(+)^{CD}_{580}$ and $(-)^{CD}_{580}$, by SP-Sephadex C-25 column chromatography. Since the CD spectrum of $(-)_{580}^{CD}$ is very similar to that of the $\Delta\Delta\Delta\Delta$ isomer of $[Zn_4{Co(aet)_3}_4]^{6+}$, it is assumed that the four [Co(L)] units in $(-)_{580}^{CD}$ -3 have the Δ configuration. When $\Delta\Delta$ -2 was used as the starting complex, instead of the racemate of 2, only the $\Delta\Delta\Delta\Delta$ isomer of 3 was formed. This result indicates that the Co^{III}₂Ag^I₃ pentanuclear structure in 2 is converted to the $Co^{III}_4Zn^{II}_4$ octanuclear structure in 3 with retention of the chiral configuration of the [Co(L)] unit. Similar conversion reactions of 2 to other S-bridged polynuclear structures are currently under wav.

Notes and References

† E-mail: konno@chem.gunma-u.ac.jp

‡ Anal. Calc. for $2(NO_3)_3$ ·4H₂O = $C_{18}H_{50}Ag_3Co_2N_{11}O_{13}S_6$: C, 17.12, H; 3.99; N, 12.20; Co, 9.34; Ag, 25.63. Found: C, 17.05; H, 3.78; N, 12.25; Co, 9.28; Ag, 25.63%. VIS–UV spectrum in H₂O [ν /10³ cm⁻¹ (log ε /mol⁻¹ dm³

cm⁻¹)]: 17.54 (2.97), 23.5 sh (2.90), 36.36 (4.62), 37.9 sh (4.6). The sh label denotes a shoulder. CD spectrum in H₂O [ν /10³ cm⁻¹ ($\Delta\epsilon$ /mol⁻¹ dm³ cm⁻¹)]: 17.73 (-16.36), 22.62 (+21.72), 25.71 (-13.25), 30.12 (+14.77), 36.76 (-129.22), 42.92 (+83.04). ¹³C NMR (500 MHz, D₂O, ppm from DSS): δ 34.64 (CH₂S), 61.62 (NHCH₂), 69.76 (NCH₂NH) (DSS = 4,4'-dimethyl-4-silapentane-1-sulfonate).

§ Anal. Calc. for $2(PF_6)_3 \cdot H_2O = C_{18}H_{44}Ag_3Co_2F_{18}N_8OP_3S_6$: C, 14.83, H; 3.04; N, 7.69. Found: C, 15.13; H, 3.03; N, 7.73%. *Crystal data* for $2(PF_6)_3 \cdot H_2O: C_{18}H_{44}Ag_3Co_2F_{18}N_8OP_3S_6$, M = 1457.3, tetragonal, space group $I\overline{4}2m$ (no. 121), a = 13.012(1), c = 24.707(2) Å, U = 4182.8(8) Å³, Z = 4, μ (Mo-K α) = 26.81 cm⁻¹, 1413 unique reflections at 296 K, R =0.055 for 1025 reflections with $I > 1.5\sigma(I)$. For the atoms of the complex cation, Co(1), Ag(1), N(4), C(3) and C(4) were constrained to the special positions of symmetry m with a site occupancy factor of 0.5, while Ag(2) was constrained to the position of symmetry 2mm with a site occupancy factor of 0.25. The site occupancy factor of other atoms of the complex cation, except C(1) and C(2), was fixed to 0.5. The symmetry-expansion operation showed that a pair of enantiomers co-exist in each of four sites in the unit cell, sharing the C atoms of the N,S-chelate rings, besides the Ag, Co and aza-capped N atoms. CCDC 182/923.

 \P Anal. Calc. for **3**(ClO₄)₆·7H₂O = C₃₆H₉₈Cl₆Co₄N₁₆O₃₂S₁₂Zn₄: C, 18.31, H;4.18; N,9.49; Co, 9.98; Zn, 11.07. Found: C, 18.16; H, 4.24; N, 9.76; Co, 10.25; Zn, 11.45%. VIS–UV spectrum in H₂O [ν /10³ cm⁻¹ (log ε /mol⁻¹ dm³ cm⁻¹)]: 17.54 (3.31), 23.41 (3.41), 29.87 (4.32), 37.31 (4.94). CD spectrum in H₂O [ν /10³ cm⁻¹ (d ε /mol⁻¹ dm³ cm⁻¹)]: 17.18 (-19.44), 21.82 (+8.83), 26.68 (+12.40), 34.60 (-111.75), 39.52 (+120.15), 43.67 (+143.24). ¹³C NMR (500 MHz, D₂O, ppm from DSS): δ 32.63 (CH₂S), 61.15 (NHCH₂), 69.51 (NCH₂NH).

- I. I. Creaser, J. M. Harrowfield, A. J. Herlt, A. M. Sargeson, J. Springborg, R. J. Geue and M. R. Snow, *J. Am. Chem. Soc.*, 1977, 99, 3181; I. I. Creaser, R. J. Geue, J. M. Harrowfield, A. J. Herlt, A. M. Sargeson, M. R. Snow and J. Springborg, *J. Am. Chem. Soc.*, 1982, 104, 6016.
- 2 L. R. Gahan, T. W. Hambley, A. M. Sargeson and M. R. Snow, *Inorg. Chem.*, 1982, 21, 2699.
- 3 H. A. Boucher, G. A. Lawrance, P. A. Lay, A. M. Sargeson, A. M. Bond, D. F. Sangster and J. C. Sullivan, J. Am. Chem. Soc., 1983, 105, 4652.
- 4 J. M. Harrowfield, A. J. Herlt, P. A. Lay and A. M. Sargeson, J. Am. Chem. Soc., 1983, 105, 5503.
- 5 L. R. Gahan, T. W. Hambley, J. M. Harrowfield, A. M. Sargeson and M. R. Snow, *J. Am. Chem. Soc.*, 1984, **106**, 5478.
- 6 A. Hohn, R. J. Geue, A. M. Sargeson and A. C. Willis, J. Chem. Soc., Chem. Commun., 1989, 1644.
- 7 L. R. Gahan, T. M. Donlevy and T. W. Hambley, *Inorg. Chem.*, 1990, **29**, 1451.
- 8 T. M. Donlevy, L. R. Gahan, T. W. Hambley and R. Stranger, *Inorg. Chem.*, 1992, **31**, 4376.
- 9 J. I. Bruce, L. R. Gahan, T. W. Hambley and R. Stranger, *Inorg. Chem.*, 1993, **32**, 5997.
- 10 R. Bhula, A. P. Arnold, G. J. Gainsford and W. G. Jackson, *Chem. Commun.*, 1996, 143.
- 11 T. Konno, K. Tokuda, T. Suzuki and K. Okamoto, Bull. Chem. Soc. Jpn., 1998, 71, 1049.
- 12 J. Jacques, A. Collet and S. H. Wilen, *Enantiomers, Racemates and Resolutions*, John Wiley & Sons Ltd., New York, 1981.
- 13 T. Konno, T. Nagashio, K. Okamoto and J. Hidaka, *Inorg. Chem.*, 1992, 31, 1160.
- 14 Y. Kageyama, T. Konno, K. Okamoto and J. Hidaka, *Inorg. Chim. Acta*, 1995, **239**, 19.

Received in Cambridge, UK, 30th April 1998; 8/03257B