[Re₉Se₁₁Br₆]²⁻: the first example of an Re₉ condensed cluster[†]

Vladimir E. Fedorov,*a Mark R. J. Elsegood,*b Spartak S. Yarovoia and Yuri V. Mironova

^a The Institute of Inorganic Chemistry, Russian Academy of Sciences, Novosibirsk, 630090, Russia ^b Department of Chemistry, Bedson Building, University of Newcastle-upon-Tyne, Newcastle-upon-Tyne, UK NE1 7RU. E-mail: Mark.Elsegood@ncl.ac.uk

A new type of rhenium condensed cluster $[Re_9Se_{11}Br_6]^{2-}$ has been synthesized by the reaction of Re_3Br_9 and PbSe at 550 °C and structurally characterised; the structure of $[Re_9Se_{11}Br_6]^{2-}$ contains the bioctahedral rhenium cluster Re_9 which can be considered as the result of progressive uniaxial condensation of three Re_3 clusters.

Condensation of fragments with the formation of polyhedral clusters is one of the most promising methods in synthetic cluster chemistry.1 The most remarkable examples of the applicability of this method are seen in the syntheses of some octahedral clusters, for example, the zirconium halide cluster $[Zr_6Cl_{12}(PMe_2Ph)_6]$ which is formed from three binuclear complexes [Zr₂Cl₆(PMe₂Ph)₄],² or of sulfide and selenide cluster complexes of molybdenum and tungsten $[M_6Y_8(PEt_3)_6]$ by reductive dimerization of two triangular cluster complexes $[M_3S_4Cl_4(PEt_3)_x]$.³ Recently⁴ we have developed a condensation method for the high yield synthesis of the octahedral rhenium cluster chalcobromides $Re_6E_4Br_{10}$ and $Re_6E_8Br_2$ (E = S, Se, Te) using the triangular cluster rhenium bromide Re₃Br₉ and lead or cadmium chalcogenides (PbE or CdE where E = S, Se and Te) as starting compounds. We have found that given condensation reactions can yield not only octahedral clusters but also other cluster complexes.

Here we present the preparation[‡] and structural characterisation[§] of a new cluster complex [PPh₄]₂[Re₉Se₁₁Br₆] containing the bioctahedral rhenium cluster anion [Re₉Se₁₁Br₆]²⁻. This type of cluster was not known for rhenium previously. It can be considered as the result of progressive uniaxial condensation of three Re₃ clusters.

 $[PPh_4]_2[Re_9Se_{11}Br_6]$ crystallises with triclinic symmetry to form dark red prisms. The $[Re_9Se_{11}Br_6]^{2-}$ unit (Fig. 1) is structurally identical to that of $Co_9Se_{11}(PPh_3)_6^7$ and Mo_9E_{11} (E = S, Se) which was found in some ternary molybdenum chalcogenides.⁸⁻¹⁴ In the crystal structures of the latter, the metal ion is bonded to six X atoms belonging to the adjacent

Fig. 1 Structure of the $[Re_9Se_{11}Br_6]^{2-}$ anion showing the atom labelling scheme and highlighting the bioctahedral Re_9 core

 Mo_9E_{11} cluster units, so $[Mo_9E_{11}X_{6/2}]$ units similar to $[Re_9-Se_{11}Br_6]^{2-}$ are formed.

The environments of the external Re atoms (Re1–3 and Re7– 9) in $[Re_9Se_{11}Br_6]^{2-}$ are similar and consist of four Re atoms, four Se atoms forming a quasi-planar square, and one Br atom. The internal Re atoms Re4–6 are connected to six Re and four Se atoms.

The Re–Re distances within the Re₉ cluster can be classified into three groups. The first corresponds to the distances within the two external Re₃ triangles formed by the Re1–3 and Re7–9 atoms, here the mean distances are 2.596(1) and 2.594(1) Å respectively; these are the shortest Re–Re distances in the Re₉ cluster. The second group is formed by Re4–6 atoms of the internal Re₃ triangle, these Re–Re distances are the longest in the cluster with a mean of 2.687(1) Å. And finally, the third group comprises the Re–Re bonds between these Re₃ triangles (inter-triangle distances) which range from 2.645(1) to 2.663(1) Å. So, in the [Re₉Se₁₁Br₆]^{2–} cluster the two external Re₃Se₃ triangles are compressed whereas the middle Re₃Se₃ triangle is expanded by comparison.

It is well known that the metal–metal distances in octahedral condensed clusters depend on the number of the valence electrons on the metal atom [the so-called valence electron concentration (VEC)], which are available for the metal–metal intracluster bonding.¹⁵ Comparing the Re₉ obtained here and the Mo₉ cluster which is found in some ternary molybdenum selenides,^{8–14} we can see that an increased charge on this cluster leads mainly to an increase in the size of the median triangle. For example, going from In₂Mo₁₅Se₁₉ to In_{3.33}Mo₁₅Se₁₉, the corresponding Mo–Mo distances increase from 2.681 to 2.768 Å⁸ showing that the same tendency is found here.

To provide a further strategy for the synthesis of other condensed rhenium clusters, it is interesting to consider the VEC and the stability of related compounds. For example, in the series of condensed clusters $[Mo_9E_{11}]^0$, $[Mo_{12}E_{14}]^{2-}$, $[Mo_{18}E_{20}]^{4-}$, $[Mo_{24}E_{26}]^{6-}$, $[Mo_{30}E_{32}]^{8-}$, $[Mo_{6/2}E_{6/2}]^{2-}$ the number of valence electrons per metal atom (VEC) available for M–M bonding is increased from 3.56, 3.83, 4, 4.08, 4.13 to 4.33, respectively,¹⁶ to allow an increase in the order of the metallic bonding. In other words, the formal oxidation state of metal atoms is lowered. In rhenium cluster chemistry, the situation is the same, namely, the VEC for $[Re_6E_8]^{2+}$ and $[Re_9Se_{11}Br_6]^{2-}$

Fig. 2 Intercluster interactions via Se-Br short contacts

cluster units is 4 and 4.11, respectively. Here it is interesting to remark that for the hypothetical $[Re_{12}E_{14}Br_6]^{2-}$ dianion (the unknown member from the next step of progressive condensation of Mo₃X₃ units) the VEC would be 4.33, that is the same as in $[Mo_{6/2}E_{6/2}]^{2-}$ clusters.

An interesting feature of the structure is the infinite chains of clusters along the crystallographic *c* axis: each cluster unit $[Re_9Se_{11}Br_6]^{2-}$ exhibits interactions to two neighbours *via* Se...Br short contacts across inversion centres (Fig. 2): Br1–Se5A 3.547 Å, Br3–Se7B 3.840 Å.

We would like to thank the EPSRC for provision of the X-ray equipment and Professor William Clegg for the use of this equipment and associated computing facilities. This work was also supported by Russian Foundation for Basic Research (grant N 96-03-32955).

Notes and References

[†] Dedicated to Professor Achim Müller on the occasion of his 60th birthday.

‡ *Experimental procedure*: Re₃Br₉, PbSe and KBr in molar ratio 1:4:6 were heated in an evacuated fused-silica tube at 550 °C for 2 d. The reaction mixture was washed with water and a small amount of boiled HBr. The resulting solid was washed with MeOH to give a dark red solution. An excess of [PPh₄]Br was added to this solution causing precipitation of a brown powder. Recrystallisation from MeCN leads to the formation of two types of crystals, dark red prisms and pyramids. The prism crystals were used for X-ray analysis.

§ X-Ray structure analysis: (PPh₄)₂Re₉Se₁₁Br₆, dark red prism, crystal dimensions, 0.33 × 0.19 × 0.18 mm, triclinic, space group $P\overline{1}$, a = 13.3335(9), b = 15.3791(11), c = 17.1175(12) Å, $\alpha = 84.687(2)$, $\beta = 73.086(2)$, $\gamma = 77.672(2)^{\circ}$, Z = 2, V = 3279.1(4) Å³ [T = 160(2) K]. $D_c = 3.750$ g cm⁻³, Bruker SMART CCD diffractometer, $2\theta_{max} = 50.00$; Mo-K α radiation, $\lambda(K\alpha_1) = 0.710$ 73 Å; ω rotation with narrow frames, 20 611 reflections measured, 11 412 independent reflections ($R_{int} = 0.0399$) all of which were included in the refinement; data corrected for Lorentz and polarisation effects⁵ and for absorption by a semi-empirical method based on high data redundance, $\mu = 263.8$ cm⁻¹, min, max. transmission = 0.0257, 0.0659, solution by direct methods,⁶ anisotropic refinement on F^2 by full-matrix least squares⁶ to give: $R_w = {\Sigma[w(F_o^2 - F_c^2)^2/\Sigma[w(F_o^2)^2]]^{1/2} = 0.0901$, conventional R = 0.0371 for 8028 reflections having $F_o^2 > 2\sigma(F_o^2)$, goodness of fit on F^2 values = 0.956 for 686 refined

parameters. The largest features in the final difference electron density map were within ± 2.87 e Å $^{-3}$ close to the Re atoms. CCDC 182/956.

- 1 T. Saito, in *Early Transition Metal Clusters with* π -Donor Ligands, ed. M. H. Chisholm, VCH, New York, 1995, p. 66.
- 2 F. A. Cotton, P. A. Kibala and W. J. Roth, J. Am. Chem. Soc., 1988, 110, 298.
- 3 T. Saito, A. Yoshikawa, T. Yamagata, H. Imoto and K. Unoura, *Inorg. Chem.*, 1989, 28, 3588; T. Saito, N. Yamamoto, T. Nagase, T. Tsuboi, K. Kobayashi, T. Yamagata, H. Imoto and K. Unoura, *Inorg. Chem.*, 1990, 29, 764.
- 4 V. P. Fedin, H. Imoto, T. Saito, V. E. Fedorov, Yu. V. Mironov and S. S. Yarovoi, *Polyhedron*, 1996, **15**, 1229; V. E. Fedorov, S. S. Yarovoi, Yu. I. Mironov, U.-H. Paek, S. C. Shin and M.-L. Seo, *Abstracts of Fifth Eurasia Conference on Chemical Sciences*, Guangzhou, China, December 10–14, 1996, p. 534; S. S. Yarovoi, Yu. I. Mironov, Yu. V. Mironov, A. V. Virovets, V. E. Fedorov, U.-H. Paek, S. C. Shin and M.-L. Seo, *Mater. Res. Bull.*, 1997, **32**, 1271.
- 5 Bruker SAINT, program for integration of frame data, Bruker Analytical X-ray Instruments, Madison, WI, 1994.
- 6 G. M. Sheldrick, SHELXTL manual, version 5, Bruker Analytical X-ray Instruments, Madison, WI, 1994.
- 7 D. Fenske, J. Ohmer and J. Hachgenei, *Angew. Chem., Int. Ed. Engl.*, 1985, **24**, 993.
- 8 A. Grüttner, K. Yvon, B. Seeber, R. Chevrel, M. Potel and M. Sergent, Acta Crystallogr., Sect. B, 1979, 35, 285.
- 9 R. Chevrel, M. Potel, M. Sergent, M. Decroux and O. Fischer, *Mater. Res. Bull.*, 1980, **15**, 867.
- 10 M. Potel, R. Chevrel and M. Sergent, Acta Crystallogr., Sect. B, 1981, 37, 1007.
- 11 P. Gougeon, J. Padiou, J. Y. Le Marouille, M. Potel and M. Sergent, J. Solid State Chem., 1984, 51, 218.
- 12 P. Gougeon, M. Potel, J. Padiou, M. Sergent, C. Boulanger and J. M. Lecuire, J. Solid State Chem., 1987, 71, 543.
- 13 B. D. Davis and W. R. Robinson, J. Solid State Chem., 1990, 85, 332.
- 14 P. Gougeon and M. Potel, Acta Crystallogr., Sect. C, 1993, 49, 427.
- 15 K. Yvon, Curr. Top. Mater. Sci., 1979, 3, 53.
- 16 R. Chevrel, P. Gougeon, M. Potel and M. Sergent, J. Solid State Chem., 1985, 57, 25.

Received in Basel, Switzerland, 29th June 1998; 8/04967J