Carbonyl propargylation or allenylation by 3-haloprop-1-yne with tin(II) **halides and tetrabutylammonium halides**

Yoshiro Masuyama,*† Akihiro Ito, Mamiko Fukuzawa, Kohji Terada and Yasuhiko Kurusu

Department of Chemistry, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo 102-8554, Japan

3-Bromoprop-1-yne causes carbonyl propargylation with tin(II) chloride and tetrabutylammonium bromide in water **to produce 1-substituted but-3-yn-1-ols, while 3-chloroprop-**1-yne causes carbonyl allenylation with tin(II) iodide and **tetrabutylammonium iodide in 1,3-dimethylimidazolidin-2-one to produce 1-substituted buta-2,3-dien-1-ols.**

Carbonyl propargylation or allenylation by 3-haloprop-1-yne with $tin(II)$ chloride is one of the most convenient methods for introduction of propargyl (prop-2-ynyl) or allenyl functions.1–3 The propargylation or allenylation is promoted by NaI or LiI; it has been presumed that the actual starting material, which reacts with $\text{tin}(\text{II})$ chloride, is 3-iodoprop-1-yne derived from the *in situ* reaction 3-bromoprop-1-yne with NaI or LiI.1,3 We have found that carbonyl allylation by allylic acetates, allylic bromides, allylic chlorides and vinyl epoxides with $rin(n)$ halide can be promoted by tetrabutylammonium bromide (TBABr). $4-8$ A lack of reaction with TBABr might suggest that LiI is required to form the intermediate 3-iodoprop-1-yne.3 Tetrabutylammonium halide (TBAX''') probably reacts with $tin(II)$ halide (SnX_{2}) to form tetrabutylammonium trihalostannate, which is more nucleophilic than SnX''_2 . We thus envisioned that TBAX^m would promote carbonyl propargylation or allenylation by 3-haloprop-1-yne with SnX''_2 .^{9,10} We here report that using different halogens in SnX''_2 and TBAX^{''} affects the selectivity between carbonyl propargylation and allenylation by 3-haloprop-1-yne; carbonyl propargylation occurs with $SnCl₂$ and TBABr, while carbonyl allenylation occurs with $SnI₂$ and TBAI.

The reaction of 3-haloprop-1-yne **1** and benzaldehyde $(2, R =$ Ph) with SnX''_2 and TBAX^{$''''$} was investigated under various

Table 1 Propargylation and allenylation of **2** ($R = Ph$) with SnX"₂ and TBAX¹¹¹ a

Entry	X'	X''	TBA $X^{\prime\prime\prime}$ (mmol)	Solvent	t/h	Yield $(\%)$ $3 + 4^b$	5c
1	Br	C1	Br(1)	DMI	24	25(100:0)	4
$\overline{2}$	Br	C1	Br(1)	THF	10	60(100:0)	9
3	Br	C1	Br(1)	$THF-H2Od$	8	70 (100:0)	8
$\overline{4}$	Br	C1	Br(1)	$CH2Cl2–H2Od$	8	58 (100:0)	12
5	Br	C1		H ₂ O	24	17(100:0)	Ω
6	Br	C1	Br(0.1)	H ₂ O	8	61(100:0)	13
7 ^e	Br	C1	Br(0.3)	H ₂ O	8	70 (100:0)	9
8	Br	C1	Br(1)	H ₂ O	7	72 (100:0)	10
Qf	Br	C1	Br(1)	H ₂ O	70	44 (100:0)	9
10	Br	Br	Br(1)	H ₂ O	10	58 (100:0)	15
11f,g	C1	I	I(0.1)	THF	70	91 (31:69)	0
12f.s	Cl	I	I(0.1)	DMF	28	91 (19:81)	0
13f,g,h	C1	I	I(0.1)	DMI	23	78 (4:96)	Ω
14f,g	Сl	T	I(0.1)	$DMI-H2Od$	47	57 (33:67)	11

a The reaction of 3-haloprop-1-yne (1.5 mmol) and benzaldehyde (1.0 mmol) was carried out with SnX''_2 (1.5 mmol) and TBA in solvent (3 ml) at 50 °C. *b* Yields of a mixture of 3 (R = Ph) and 4 (R = Ph). The ratio in parentheses was determined by ¹H NMR analysis (JEOL GX-270 or Λ –500). *c* Isolated yields of **5** (R = Ph). *d* Organic solvent–H₂O = 1:1. e Method A. f The reaction was carried out at 25 °C. g NaI (1.5 mmol) was added. *h* Method B.

conditions. The results are summarized in Table 1. The reaction of 3-bromoprop-1-yne $(1, X' = Br)$ with SnCl₂ and TBABr at 50 °C in water led to carbonyl propargylation to produce 1-phenylbut-3-yn-1-ol $(3, R = Ph)$ (entry 7, Method A), while the reaction of 3-chloroprop-1-yne $(1, X' = C)$ with $SnI₂$ and TBAI at 25 °C in 1,3-dimethylimidazolidin-2-one (DMI) led to carbonyl allenylation to produce 1-phenylbuta-2,3-dien-1-ol (**4**, $R = Ph$) (entry 13, Method B) [eqn. (1)]. TBAX^{*m*} accelerated

the carbonyl propargylation or allenylation; >0.1 equiv. of TBAX $^{\prime\prime\prime}$ was required (entries 5–8). In the propargylation the use of $SnCl₂$ and TBABr (or TBACl) is superior to other combinations of reagents, while $SnI₂–TBAI$ is the best combination of reagents for the allenylation. 3-Chloroprop-1-yne $(1, X' = C)$ did not react under the same conditions as those of the propargylation with $1 (X' = Br)$. Water is a more effective solvent in the propargylation than some organic polar solvents, such as DMI and THF, in which both organic substrates and $SnCl₂$ are soluble (entries 1, 2 and 8). The byproduct produced during the propargylation, 4-phenylbut-3-en-2-one $(5, R = Ph)$, was probably formed by the hydration of allenylated product **4** ($R = Ph$).³ The reaction of **1** ($X' = Cl$) and $\dot{2}$ (R = Ph) with SnI_2 -TBAI did not occur in water, and proceeded with lower selectivity for the allenylation in DMI– water (entry 14). Thus, water is unsuitable for the allenylation, in which DMI is a better solvent than DMF or THF (entries $11-13$).

Table 2 Either propargylation or allenylation with SnX"₂ and TBAX^{'''}

R	Method ^a	t/h	Yield $(\%)$ $3 + 4^b$	5 ^c
$4-MeO2CC6H4$	А	7	75 (100:0)	14
$4-MeO2CC6H4$	в	24	80 (17:83)	θ
$4-NCC6H4$	A	16	77 (100:0)	4
$4-NCC6H4$	B	23	62(2:98)	θ
$4-MeC6H4$	A	20	70 (100:0)	4
$4-MeC6H4$	B	23	53 (7:93)	θ
$4-MeOC6H4$	A	16	62(100:0)	4
$4-MeOC6H4$	В	25	50 (5:95)	Ω
MeCH ₂	А	12	63(100:0)	0
MeCH ₂	В	90d	50 (7:93)	0
c -C ₆ H ₁₁	A	12	48 (100:0)	7
$c - C_6H_{11}$	в	88d	71 (20:80)	0

a Method A: Entry 7 in Table 1. Method B: Entry 13 in Table 1. *b* Yields of a mixture of **3** and **4**. The ratio in parentheses was determined by 1H NMR analysis (JEOL GX-270 or Λ –500). ^c Isolated yields. ^d The reaction was carried out at 0 °C.

The propargylation (Method A) and allenylation (Method B) of various aldehydes by 3-haloprop-1-yne **1** was carried out under the conditions which gave the best results for benzaldehyde, as summarized in Table 2. Aromatic aldehydes bearing an electron-donating or $-\text{withdrawing}$ group and aliphatic aldehydes can be used to afford the corresponding 1-substituted but- 3 -yn-1-ols **3** using the $SnCl₂–TBABr/water$ system or the corresponding 1-substituted buta-2,3-dien-1-ols **4** with the SnI2–TBAI/DMI system in moderate yields.

A plausible mechanism was illustrated with Scheme 1. The difference between propargylation using the $SnCl₂-TBABr/$ water system and allenylation using the $SnI₂–TBAI/DMI$ system may be due to the Lewis acidity of the tin, reaction temperature and reaction medium. ¹H NMR (JEOL Λ –500) observation in $[²H₇]DMF$ at 25 °C revealed that prop-2-ynyltriiodotin $(7, X = I)$ was first formed *via* the reaction of 3-chloroprop-1-yne $(1, X' = C)$ with $SnI₂$ and NaI. Prop-2-ynyltriiodotin (7, X = I) probably proceeded *via* γ -addition to the aldehyde (carbonyl allenylation), without isomerizing to propa-1,2-dienyltriiodotin $(8, X = I)$, in dry polar solvents such as DMI and DMF to produce buta-2,3-dien-1-ols **4**.‡ In contrast, the isomerization of prop-2-ynylbromodichlorotin $(7, X_3 =$ $BrCl₂$), derived from reaction of 3-bromoprop-1-yne (1, X' = Br) with $SnCl₂$ and TBABr at the organic–aqueous interface, to propa-1,2-dienylbromodichlorotin $(8, X_3 = BrCl₂)$ probably occurred more rapidly at 50 °C than carbonyl allenylation by **7** $(X_3 = BrCl_2)$. § The carbonyl propargylation by $\mathbf{8} (X_3 = BrCl_2)$ at 50 °C in water thus produced but-3-yn-1-ols **3**.¶

Notes and References

† E-mail: y-masuya@hoffman.cc.sophia.ac.jp

 \ddagger The carbonyl allenylation by **7** ($\dot{X} = I$) seems to have proceeded *via* an acyclic antiperiplanar transition state, because of the weakly Lewis acidic tin in $7 (X = I)$. See ref. 7 and 8.

§ It was shown by ¹H NMR analysis (JEOL Λ -500) that prop-2-ynyltriiodotin $(7, X = I)$, derived from 3-chloroprop-1-yne $(1, X' = Cl)$ *via* reaction with SnI₂ and NaI in $[2H_7]$ DMF, isomerized easily to propa-1,2-dienyltriiodotin $(\mathbf{8}, X = I)$ at 50 °C; J. A. Marshall, R. H. Yu and J. F. Perkins, *J*. *Org*. *Chem*., 1995, **60**, 5550.

The carbonyl propargylation by $\mathbf{8}$ (X₃ = BrCl₂), which has a strongly Lewis acidic tin, seems to have proceeded *via* a usual six-membered cyclic transition state.

- 1 T. Mukaiyama and T. Harada, *Chem*. *Lett*., 1981, 621.
- 2 G. P. Boldrini, E. Tagliavini, C. Trombini and A. Umani-Ronchi, *J*. *Chem*. *Soc*., *Chem*. *Commun*., 1986, 685.
- 3 M. Iyoda, Y. Kanao, M. Nishizaki and M. Oda, *Bull*. *Chem*. *Soc*. *Jpn*., 1989, **62**, 3380.
- 4 Y. Masuyama, in *Advances in Metal-Organic Chemistry*, ed L. S. Liebeskind, JAI, Greenwich, 1994, vol. 3, p. 255.
- 5 Y. Masuyama, J. Nakata and Y. Kurusu, *J*. *Chem*. *Soc*., *Perkin Trans*. *1*, 1991, 2598.
- 6 Y. Masuyama, M. Kishida and Y. Kurusu, *J*. *Chem*. *Soc*., *Chem*. *Commun*., 1995, 1405.
- 7 Y. Masuyama, M. Kishida and Y. Kurusu, *Tetrahedron Lett*., 1996, **37**, 7103.
- 8 Y. Masuyama, A. Ito and Y. Kurusu, *Chem*. *Commun*., 1998, 315.
- 9 For selective carbonyl propargylation in Barbier-type procedures, see: H. Tanaka, T. Hamatani, S. Yamashita and S. Torii, *Chem*. *Lett*., 1986, 1461 and references cited therein.
- 10 For carbonyl propargylation and allenylation, see: H. Yamamoto, in *Comprehensive Organic Synthesis*, ed B. M. Trost, Pergamon, Oxford, 1991, vol. 2, p. 81.

Received in Cambridge, UK, 6th August 1998; 8/06206D