Syntheses and structures of $W_2(\mu-Cl)_3Cl_6^-$ and $W_2(\mu-Cl)_2Cl_8^{2-}$, new d²–d² confacial and edge-sharing bioctahedral ditungsten compounds, and a convenient synthesis of $W_2(\mu-Cl)_3Cl_6^{2-}$

Vladimir Kolesnichenko, Dale C. Swenson and Louis Messerle*

Department of Chemistry, The University of Iowa, Iowa City, IA 52242, USA. E-mail: lou-messerle@uiowa.edu

 $(NR_4)W_2Cl_9$ and $(NR_4)_2W_2Cl_{10}$, prepared by addition of NR₄Cl (R = alkyl) to $(WCl_4)_x$ powder in CH₂Cl₂, have confacial [W=W, 2.689(1) Å] and edge-sharing bioctahedral [W=W, 2.792(1) Å] structures, respectively, as NBnEt₃+ salts, and convert with added NR₄Cl to $(NR_4)_2W_2Cl_9$ and $(NR_4)WCl_6$ and eventually $(NR_4)_2WCl_6$; $(NR_4)W_2Cl_9$ can be converted to $(NR_4)_2W_2Cl_{10}$ by NR₄Cl at -30 °C.

High symmetry confacial $[M_2(\mu-L)_3L_6, D_{3h}; L = ligand]$ and edge-sharing $[M_2(\mu-L)_2L_8, D_{2h}]$ bioctahedral complexes are known for many transition metals and are of considerable importance for understanding metal–metal single and multiple bonding.¹ The effect of orbital population on M–M distance can be understood by studying isostructural compounds with various d-electron counts. Confacial bioctahedral congeners with differing d-electron counts are known for few metals (*e.g.* Re,² W). For tungsten, $W_2(\mu-Cl)_3Cl_6^{3-}$ (d³–d³; one of the first³ metal–metal bonded compounds to be recognized⁴ as such) and d²–d³ $W_2(\mu-Cl)_3Cl_6^{2-}$ have been reported.^{5,6} The W–W distance in the former, which has been studied theoretically,⁷ is a short 2.409(7)–2.4329(6) Å,^{6,8,9} (depending on cation), and increases⁶ by 0.12 Å upon oxidation to $W_2(\mu-Cl)_3Cl_6^{2-}$. While there are many preparations¹⁰ of $W_2(\mu-Cl)_3Cl_6^{3-}$, few are known for the dianion;^{5,6,11} $W_2(\mu-Br)_3Br_6^{2-}$ is also known.¹²

We recently developed new syntheses of powdered and crystalline (WCl₄)_x and showed that its structure was a linear polymer of edge-sharing bioctahedra with alternating short (double bond) and long (no bond) W...W separations.¹³ The unusually reactive powder form, prepared from Sn reduction of WCl₆ in ClCH₂CH₂Cl, reacts with NR₄Cl to give the new chloroditungstates $W_2(\mu$ -Cl)₂Cl₈²⁻ **1** and $W_2(\mu$ -Cl)₃Cl₆⁻ **2** as well as $W_2(\mu$ -Cl)₃Cl₆²⁻ **3**. We report synthetic and structural details.

The reaction of NR₄Cl (R₄ = BnEt₃, BnBu₃, Bu₄) with (WCl₄)_x leads to scission of dinuclear fragments, disproportionation, and then comproportionation depending on stoichiometry and temperature. At 25 °C, reaction of (WCl₄)_x with one equiv. of NBnEt₃Cl (a cation which facilitates product separation) in CH₂Cl₂ leads to (NBnEt₃)₂(W₂Cl₉) [**3**; 96% isolated yield, eqn. (1)][†] and (NBnEt₃)WCl₆. The mixture is comproportionated by NBnEt₃Cl to (NBnEt₃)₂WCl₆ [94% yield, eqn. (1)]. UV–VIS spectra of products matched literature data.^{11,14}

$$3 \text{ WCI}_4 \xrightarrow[-(\text{NR}_4)\text{WCI}_6]{3 \text{ NR}_4\text{CI}} (\text{NR}_4)_2[\text{W}_2(\mu\text{-CI})_3\text{CI}_6] \xrightarrow[-3 \text{ NR}_4\text{CI}]{3 \text{ NR}_4\text{CI}} 3 (\text{NR}_4)_2\text{WCI}_6 (1)$$

The reaction between $(WCl_4)_x$ and NBnEt₃Cl in CH₂Cl₂ at -30 °C yields $(NBnEt_3)_2[W_2(\mu-Cl)_2Cl_8]$ **1** which crystallizes along with undissolved $(WCl_4)_x$. Upon warming to 25 °C, **1** redissolves and disproportionates to **3** and $(NBnEt_3)WCl_6$ [eqn. (2)], thus establishing that **1** is an intermediate in eqn. (1). With additional $(WCl_4)_x$, **3** and $(NR_4)WCl_6$ comproportionate to emerald green $(NBnEt_3)[W_2(\mu-Cl)_3Cl_6]$ [**2**; eqn. (2)]. Compound **2** can be prepared conveniently‡ in one step (90% isolated yield) by combining $(WCl_4)_x$ with 0.5 equiv. NBnEt₃Cl in CH₂Cl₂ at 25 °C, and can be converted§ back to **1** (95%)

isolated yield) at -30 °C by NBnEt₃Cl in CH₂Cl₂; isolation is possible because of the low solubility of the NBnEt₃⁺ salt. We believe that **1** and **2** have not been observed in previous studies^{5,6,14} because they disproportionate in solution (**1**) or in the presence of Cl⁻ (**2**). Compound **2** is reduced to **3** by either (NBnEt₃)₂WCl₆ or Cp₂Fe in CH₂Cl₂. Scheme 1 summarizes the principal transformations.

The syntheses of **1**, **2**, and **3** are facilitated by the use of $(WCl_4)_x$ powder.¹³ Reactions of $(WCl_4)_x$, as prepared by reduction of WCl_6 with red phosphorus, $W(CO)_6$, or Sb,¹³ with NR₄Cl proceed more slowly and lead to lower purity materials because the lower solubility of these $(WCl_4)_x$ materials results in an excess of NR₄Cl in the early stages of the reactions.

Single crystals of $(NBnEt_3)_2[W_2(\mu-Cl)_2Cl_8]\cdot 3CH_2Cl_2 \mathbf{1}$ were obtained from -35 °C CH₂Cl₂ solution. The solid-state structure¶ of the centrosymmetric ditungstate portion of $\mathbf{1}$ (Fig. 1) consists of an edge-sharing bioctahedron with a W(1)–W(1A) distance of 2.792(1) Å, a W(1)–Cl(1)–W(1A) angle of 71.88(6)°, and a Cl(1)–W(1)–Cl(1A) angle of 108.12(6)°. The crystallographically independent axial Cl(2) and Cl(3) in each bioctahedral hemisphere are bent away from Cl(3A) and Cl(2A) with Cl(2)–W(1)–W(1A) and Cl(3)–W(1)–W(1A) angles of

Fig. 1 Thermal ellipsoid plot of the molecular structure of the ditungsten anion portion of ${\bf 1}$

Chem. Commun., 1998 2137

Fig. 2 Thermal ellipsoid plot of the molecular structure of the ditungsten anion portion of ${\bf 2}$

94.38(6)° and 93.98(6)°, respectively, and a Cl(2)…Cl(3A) nonbonded distance which is appreciably closer [3.131(3) Å] than twice the Cl van der Waals (VDW) radius of 1.70–1.90 Å.¹⁵

The anion in **1** is similar to that of the W=W bonded portion of $(WCl_4)_x$, and can be formally viewed as the scission of that edge-sharing bioctahedral portion of the polymeric structure¹³ and addition of two Cl⁻ endcaps. The W=W distance in crystalline $(WCl_4)_x$ is 2.688(2) Å, with W–Cl–W bridge angles of 69.4(2)° and bent-back axial Cl [W–W–Cl(axial), 94.99(12)°]. The axial Cl in each bioctahedral hemisphere of $(WCl_4)_x$ are also closer [3.085(10) Å] than twice the Cl VDW radius. There is no similarity between the structures of **1** and W_2Cl_{10} [*i.e.* $W_2(\mu$ -Cl)_2Cl₈] which has a long W···W separation of 3.814(2) Å and a Cl_µ–W–Cl_µ angle of 81.5(1)°.¹⁶

The only other Group 6 $M_2(\mu$ -Cl)₂Cl₈²⁻ compound is edgesharing bioctahedral (PPh₄)₂[Mo₂Cl₁₀],¹⁷ with no Mo–Mo bond (Mo···Mo, 3.80 Å). The reason(s) for the substantial differences between Mo₂(μ -Cl)₂Cl₈²⁻ and W₂(μ -Cl)₂Cl₈²⁻ **1** are presently unknown, though the difference in degree of metal–metal bonding parallels that for Mo₂(μ -Cl)₃Cl₆³⁻ and W₂(μ -Cl)₃Cl₆³⁻.

Single crystals of (NBnEt₃)[$W_2(\mu$ -Cl)₃Cl₆] **2** were obtained from cooled (-35 °C) CH₂Cl₂/CHCl₃ solutions. Single-crystal X-ray diffractometry|| confirmed that the anion portion of **2** possesses a confacial bioctahedral structure (Fig. 2) with a W(1)–W(2) distance of 2.696(3) Å and an acute W(1)–Cl(μ)– W(2) average angle of 66.6(1)° which is smaller than the bridge angle of 70.53° for an idealized confacial bioctahedron. The W–W distance and W–Cl_{μ}–W angles are consistent with a formal W(1)–W(2) double-bonding (a₁'2e'²) interaction.

The W–W distance in $W_2(\mu-Cl)_3Cl_6^{n-}$ (n = 3, 2, 1) thus increases from 2.409(7) to 2.4329(6) Å for n = 3, to 2.540(1) Å for n = 2, and to 2.696(3) Å for n = 1 (compound **2**), as would be expected from σ -bond weakening with increasing nuclear charge and/or the decrease in formal bond order from 3 to 2.5 to 2.⁶ The UV–VIS data for **2** correspond to those reported¹¹ for (Bu₄N)₂(W₄Cl₁₇), whose structure was not determined. The analytical accuracy, as the authors noted, did not rule out an alternative formulation such as NBu₄(W₂Cl₉). It is interesting that W₄Cl₁₇^{2–} was reported¹¹ to react with excess Cl[–] to give products including W₂Cl₉^{2–}, as does **2**.

The mechanism of formation of 1, 2, and 3 from chloride attack on $(WCl_4)_x$, the solid-state and solution magnetochemistry of 1 and 2 (which exhibits a surprisingly low moment of \leq 1.3 μ_B in solution by the Evans method), theoretical studies using the GAMESS program,¹⁸ and the reactivity of the new ditungsten(rv) perchloroanions are under investigation.

The support of Nycomed, Inc. and the University of Iowa Biosciences Initiative Research Program is gratefully acknowledged, as are the useful comments of a reviewer.

Notes and References

 \dagger Synthesis of **3**: a stirred mixture of 0.500 g (1.535 mmol) WCl₄ and 0.350 g (1.537 mmol) NBnEt₃Cl in 10 mL CH₂Cl₂ converted in 10 min from a gray suspension to a deep purple-brown suspension with microcrystals, and eventually to a deep blue-purple precipitate in a green-brown solution. After several days, the precipitate was filtered off, washed with CH₂Cl₂ until the

wash became light blue-purple, and dried *in vacuo*. Weight = 0.525 g (96% yield). The UV–VIS spectrum (CH₂Cl₂) matched those of known W₂Cl₉^{2–} salts. Anal: W, 33.7; Cl, 29.01. Calc. for (NBnEt₃)₂W₂Cl₉: W, 34.32; Cl, 29.78%. The supernatant was cooled to -30 °C for one day and a first crop of the brown crystalline product was isolated by filtration for analysis and dried *in vacuo*; weight 0.110 g (37% yield) (NBnEt₃)WCl₆. Anal: W, 31.2; Cl, 36.43. Calc. for (NBnEt₃)WCl₆: W, 31.22; Cl, 36.12%.

‡ Synthesis of **2**: a stirred mixture of WCl₄ (1.00 g, 3.07 mmol), NBnEt₃Cl (0.350 g, 1.54 mmol), and CH₂Cl₂ (15 mL) gave a deep blue-green solution after 10–30 min. After one day, the deep blue-green solution was filtered and rotary-evaporated to a viscous oil, which crystallized to 1.218 g dark emerald-green product (90% yield). Anal: W, 41.1; Cl, 35.58. Calc. for (NBnEt₃)W₂Cl₉: W, 41.83; Cl, 36.29%. UV–VIS, λ /nm (ϵ /dm³ mol⁻¹ cm⁻¹): 650 (825), 530 (370), 360 (shoulder), and 305 (22600). MS (FAB, negative ion mode, m/z): 687 (M⁺, base peak for W₂Cl₉⁻ isotope pattern).

§ Synthesis of **1** *via* Cl⁻ addition to $W_2Cl_9^-$: pre-cooled (-30 °C) solutions of 0.052 g (0.228 mmol) NBnEt₃Cl in 2 mL of CH₂Cl₂ and 0.200 g (0.228 mmol) (NBnEt₃)(W₂Cl₉) in 4 mL of CH₂Cl₂ were mixed. Deep purplebrown microcrystals formed immediately. After aging at -30 °C for 1 day, the crystals were filtered off cold, washed with cold CH₂Cl₂ (*ca*. 5 mL) and dried *in vacuo*. Weight = 0.257 g (95% yield). Anal: W, 30.8. Calc. for (NBnEt₃)₂W₂Cl₁₀CH₂Cl₂: W, 30.85%.

¶ Crystallographic data for **1**: $C_{29}H_{50}Cl_{16}N_2W_2$, [(NBnEt₃)₂(W₂Cl₁₀)-(CH₂Cl₂)₃], M = 680.81, monoclinic, a = 14.620(3), b = 15.430(3), c = 10.860(2) Å, $\beta = 108.38(3)^\circ$, V = 2324.9(8) Å³, T = 213 K, space group $P_{2_1/n}$, Z = 2, $\mu = 5.889$ mm⁻¹, 5553 reflections measured, 4053 independent reflections, R1 = 0.0451, wR2 = 0.0918.

|| Crystallographic data for **2**: $C_{13}H_{22}Cl_9NW_2$, M = 879.07, monoclinic, a = 8.910(2), b = 15.350(3), c = 17.920(4) Å, $\beta = 94.80(3)^\circ$, V = 2442.3(9) Å³, T = 213 K, space group $P2_1/c$, Z = 4, $\mu = 10.398$ mm⁻¹, 4672 reflections measured, 3819 independent reflections, R1 = 0.0500, wR2 = 0.0987. CCDC 182/968.

- (a) F. A. Cotton and R. A. Walton, *Multiple Bonds Between Metal Atoms*, 2nd edn. Clarendon Press, Oxford, 1993, p. 3; (b) F. A. Cotton and D. A. Ucko, *Inorg. Chim. Acta*, 1972, **6**, 161; (c) R. H. Summerville and R. Hoffmann, *J. Am. Chem. Soc.*, 1979, **101**, 3821; (d) S. Shaik, R. Hoffmann, C. R. Fisel and R. H. Summerville, *J. Am. Chem. Soc.*, 1980, **102**, 4555; (e) W. C. Trogler, *Inorg. Chem.*, 1980, **19**, 697; (f) F. A. Cotton and X. Feng, *Int. J. Quantum Chem.*, 1996, **58**, 671.
- 2 G. A. Heath, J. E. McGrady, R. G. Raptis and A. C. Willis, *Inorg. Chem.*, 1996, **35**, 6838.
- 3 (a) O. Olsson, Ber. Dtsch. Chem. Ges., 1913, **46**, 566; (b) O. Olsson, Z. Anorg. Allg. Chem., 1914, **88**, 1914.
- 4 (a) C. Brosset, Ark. Chem., Miner. Geol. A, 1935, 12, no. 4; (b) C. Brosset, Nature, 1935, 135, 874.
- 5 R. Saillant and R. A. D. Wentworth, J. Am. Chem. Soc., 1969, 91, 2174.
- 6 F. A. Cotton, L. R. Falvello, G. N. Mott, R. R. Schrock and L. G. Sturgeoff, *Inorg. Chem.*, 1983, **22**, 2621.
- 7 (a) R. Stranger, S. A. Macgregor, T. Lovell, J. E. McGrady and G. A. Heath, J. Chem. Soc., Dalton Trans., 1996, 4485; (b) J. E. McGrady, T. Lovell and R. Stranger, Inorg. Chem., 1997, 36, 3242.
- 8 W. H. Watson, Jr. and J. Waser, Acta Crystallogr., 1958, 11, 689.
- 9 K. R. Dunbar and L. E. Pence, Acta Crystallogr., Sect. C, 1991, 47, 23.
- (a) H. B. Jonassen, A. R. Tarsey, S. Cantor and G. F. Helfrich, *Inorg. Synth.*, 1957, **5**, 139; (b) R. A. Laudise and R. C. Young, *Inorg. Synth.*, 1960, **6**, 149; (c) E. A. Heintz, *Inorg. Synth.*, 1963, **7**, 142; (d) R. C. Young, *J. Am. Chem. Soc.*, 1932, **54**, 4515; (e) R. Uzel and R. Pribil, *Coll. Czech. Chem. Commun.*, 1938, **10**, 330; (f) O. Collenberg and J. Backer, *Z. Electrochem.*, 1924, **30**, 230; (g) R. Saillant, J. L. Hayden and R. A. D. Wentworth, *Inorg. Chem.*, 1967, 6, 1497.
- 11 W. H. Delphin and R. A. D. Wentworth, Inorg. Chem., 1973, 12, 1914.
- 12 J. L. Templeton, R. A. Jacobsen and R. E. McCarley, *Inorg. Chem.*, 1977, 16, 3320.
- 13 V. Kolesnichenko, D. C. Swenson and L. Messerle, *Inorg. Chem.*, 1998, 37, 3257.
- 14 T. B. Scheffler and C. L. Hussey, Inorg. Chem., 1984, 23, 1926.
- 15 A. Bondi, J. Phys. Chem., 1964, 68, 441.
- 16 F. A. Cotton and C. E. Rice, Acta Crystallogr., Sect. B, 1978, 34, 2833.
- 17 E. Hey, F. Weller and K. Dehnicke, Z. Anorg. Allg. Chem., 1984, 508, 86.
- 18 J. Jensen and L. Messerle, unpublished results.
- Received in Bloomington, IN, USA, 26th May 1998; 8/03903H