Outstanding effect of SO₂ addition on the rate of carbon oxidation with a Pt catalyst

Junko Oi-Uchisawa,*† Akira Obuchi, Ryuji Enomoto, Atsushi Ogata and Satoshi Kushiyama

Atmospheric Environmental Protection Department, National Institute for Resources and Environment, 16-3 Onogawa, Tsukuba, Ibaraki 305-8569, Japan

Addition of trace SO_2 (*ca.* 8 ppm) to a reactant gas containing NO substantially enhanced the oxidation rate of carbon black mixed with a Pt/SiO₂ catalyst, which is attributed to SO₃ (or H₂SO₄) catalyzing the oxidation of carbon by NO₂.

The emission of soot from diesel engines is a serious environmental problem. Among the many catalysts for soot oxidation that have so far been reported, Pt exhibits high levels of catalytic activity.^{1–5} Platinum is thought to promote soot oxidation indirectly, *i.e.* by oxidizing the NO normally coexisting in the exhaust gas into NO₂, which actually oxidizes soot to CO and CO₂. Here we report the effect of adding SO₂ to the reactant gas, which dramatically promoted the oxidation of carbon black.

Platinum (1 wt%) supported on silica gel (Pt/SiO₂) was prepared by impregnating SiO₂ (0.1 to 0.25 mm in diameter, 374 m² g⁻¹) with a solution of Pt(NH₃)₄(OH)₂, followed by drying, reduction with H₂ at 400 °C and calcination in air at 600 °C. Commercially available carbon black (CB; Nippon Tokai carbon 7350F; primary particle size = 28 nm; specific surface area = $80 \text{ m}^2 \text{ g}^{-1}$; CHN analysis: C, 97.99; H, 1.12; N, 0.06%; H₂O = 0.58 wt%) was used as model soot. The Pt/SiO₂ catalyst (0.5 g) and CB powder (0.005 g) were simply mixed together with a spatula and placed in the reactor. Mixing in this way results in a 'loose' contact between the catalyst and carbon, which is thought to be close to that found in practical cases.⁶ Temperature-programmed reactions (TPRs) were carried out in a tubular quartz reactor. Reactant gases-10% O₂, 7% H₂O, 0 or 1000 ppm NO, 0 to 100 ppm SO₂ and N₂, a composition which is typical of diesel exhaust gas, except for the absence of CO2were passed through the mixture of catalyst and CB at a flow rate of 0.5 dm³ (STP) min⁻¹. The temperature of the reactor was raised from 80 to 700 °C by 10 °C min-1. A non-dispersive IR gas analyzer was used to continuously measure the concentrations of CO and CO_2 emitted by the carbon oxidation. In addition, TPR measurements using an FTIR gas analyzer were separately conducted to measure the concentrations of NO, NO2 and SO_2 in the product gas.

Fig. 1 shows the effect of the composition of the reactant gas on the CO₂ emission during the TPR. The CO concentration was almost zero in all cases (≤ 0.8 ppm). In the gas mixture N₂ + O₂ + H₂O [Fig. 1(\bigcirc)], carbon was not oxidized at all below 500 °C, above which temperature the reaction rate increased abruptly and the oxidation was finished at 675 °C. Platinum had no accelerating effect on the carbon gasification under these conditions, since the TPR result using SiO₂ alone (not shown) was almost the same as that shown in Fig. 1(\bigcirc). Fig. 1(\bigcirc) shows the result when 100 ppm SO₂ was added to the reactant gas. Sulfur dioxide had no effect on the oxidation under these conditions. On the other hand, the addition of NO instead of SO₂ brought about an acceleration of carbon oxidation Fig. $1(\triangle)$. The initial temperature, which we define as the point where the CO₂ concentration exceeds 100 ppm, was about 200 °C lower than that in $N_2 + O_2 + H_2O$. In the case of SiO₂ alone, such a promotional effect of NO was not observed, but when NO2 was used instead of NO, the CO2 emission curve shifted to nearly the same temperature region as Fig. 1(\triangle). These results suggest that NO₂, which is formed by the oxidation of NO over Pt, oxidizes carbon black more strongly than O₂. The effect of NO₂ on soot oxidation has been already reported by several researchers.^{4,5,7}

The striking effect of SO₂ was observed when it was further added to $N_2 + O_2 + H_2O + NO$ over the Pt/SiO₂. By adding only 1 ppm of SO₂, the CO₂ emission level at 350 °C increased by 210 ppm [Fig. 1(\blacktriangle)]. As the concentration of SO₂ was increased, a new peak appeared at around this temperature; when the SO₂ concentration exceeded 23 ppm, CO₂ emission was at its maximum at this temperature [Fig. 1(\diamondsuit) and (\blacklozenge)]. The temperature of maximum CO₂ emission was about 300 °C lower than that in the $N_2 + O_2 + H_2O$ mixture and more than 200 $^{\circ}C$ lower than that in N_2 + O_2 + H_2O + NO. The initial temperature decreased to as low as 250 °C. The CO2 concentrations at 350 °C in the experiments containing NO were plotted as a function of SO₂ content in the reactant gas (Fig. 2). The CO_2 concentration dramatically increases until the SO₂ content reaches 8 ppm and then almost levels off with further increases in SO₂ content. Such a promotional effect of SO_2 is not observed with SiO_2 alone, even when NO_2 is used instead of NO.

Fig. 1 TPR profiles of Pt/SiO₂ in carbon oxidation. Conditions; catalyst = 0.5 g, carbon = 0.005 g, flow rate = 0.5 dm³ min⁻¹ (0 °C, 1 atm) (**X** = 10% O₂ + 7% H₂O in N₂, **Y** = 10% O₂ + 7% H₂O + 1000 ppm NO in N₂): (○) **X**, (●) **X** + 100 ppm SO₂, (△) **Y**, (▲) **Y** + 1 ppm SO₂, (□) **Y** + 4 ppm SO₂, (■) **Y** + 8 ppm SO₂, (◇) **Y** + 23 ppm SO₂, (◆) **Y** + 100 ppm SO₂.

Chem. Commun., 1998 2255

Fig. 2 Effect of the concentration of SO₂ on the activity of Pt/SiO₂ catalyst in carbon oxidation (T = 350 °C). Conditions are as in Fig. 1.

Separate TPR experiments using an FTIR gas analyzer were also carried out under the conditions of 10% O₂, 0.5% H₂O, 1000 ppm NO, 100 ppm SO₂ and N₂. Over Pt/SiO₂, NO starts to be oxidized to NO₂ at 160 °C. The concentration of NO₂ reached a maximum at 330 °C and then decreased in accordance with levels expected from the thermodynamic equilibrium between NO₂, NO and O₂. The concentration of SO_2 in the product gas started to decrease at 165 °C, reached a negligible level between 220 to 500 °C, and then gradually increased in accordance with levels expected from the thermodynamic equilibrium between SO₃, SO₂ and O₂. Evidently, the oxidation of NO into NO₂ and SO₂ into SO₃ (or H₂SO₄ below 300 °C) proceeded over Pt/SiO₂. Incidentally, the oxidation of SO₂ to SO₃ by gaseous NO₂ did not proceed to an observable extent over SiO₂ alone under the conditions of 10% O₂, 0.5% H₂O, 1000 ppm NO₂, 100 ppm SO₂ and N₂. Nitrogen dioxide is regarded as an oxidizer that directly attacks the carbon and turns into NO; the NO may be oxidized to NO2 over Pt/SiO2 and reused. On the other hand, the outstanding effect of SO₂ with Pt/ SiO₂ only appeared in the presence of NO suggesting that SO₃, produced from SO_2 over Pt, plays a role as a catalyst that accelerates the oxidation of carbon by NO_2 .

To confirm this possible role of SO₃ (or H₂SO₄), we tested the effect of NO₂ and H₂SO₄ addition on the carbon oxidation over SiO₂ alone. When 1000 ppm NO₂ and 100 ppm H₂SO₄ were added to the feed containing 10% O₂ + 7% H₂O in N₂, the oxidation was initiated at 280 °C and there were peaks in CO₂ concentration at 380 and 490 °C. By contrast the addition of 100 ppm H₂SO₄ alone did not have any effect on the CO₂ emission rate: the initial and peak temperatures were around 560 and 680 °C, respectively. These results strongly suggest that SO₃ (or H₂SO₄) formed over Pt surfaces catalyzes the oxidation of carbon by NO₂.

Lur'e *et al.*⁷ reported that the process of CO₂ formation from the interaction of NO₂ with soot proceeds through the oxidation of active sites on the soot surface, *via* abstraction of oxygen atoms from NO₂, to produce partially oxidized surface species (>C=O) and NO. We suspect that the effect of SO₃ (or H₂SO₄) can be attributed to the enhancement of decomposition of the partially oxidized surface species. It is well known that H₂SO₄ promotes dehydration and decarboxylation of organic compounds.⁸ The partially oxidized surface species created by NO₂ may be rather inactive against further oxidation, but can be readily decomposed by a strong acid such as SO₃ or H₂SO₄. After this secondary process, the ability of the carbon surface to be oxidized may be restored.

Notes and References

† E-mail: junko@nire.go.jp

- 1 G. Neri, L. Bonaccorsi, A. Donato, C. Milone, M. Grazia M. and A. M. Visco, *Appl. Catal. B*, 1997, **11**, 217.
- 2 H. J. Stein, Appl. Catal. B, 1996, 10, 69.
- 3 M. Hosoya and M. Shimoda, Appl. Catal. B, 1996, 10, 83.
- 4 P. Hawker, N. Myers, G. Huthwohl, H. T. Vogel, B. Bates, L. Magnusson and P. Bronnenberg, SAE Technical Paper Series, 970182, 1997.
- 5 B. J. Cooper, H. J. Jung and J. E. Thoss, US Pat. 4902487.
 6 J. P. A. Neeft, O. P. Pruissen, M. Makkee and J. A. Moulijn, Appl. Catal.
- *B*, 1997, **12**, 21
- 7 B. A. Lur'e and A. V. Mikhno, Kinet. Catal., 1997, 38, 535
- 8 Advanced Organic Chemistry, Reactions, Mechanisms and Structure, 4th edn., ed. J. March, Wiley, New York, p. 389, p. 563, p. 1011

Received in Cambridge, UK, 20th July 1998; 8/05598J