Outstanding effect of SO₂ addition on the rate of carbon oxidation with a Pt catalyst

Junko Oi-Uchisawa,*† Akira Obuchi, Ryuji Enomoto, Atsushi Ogata and Satoshi Kushiyama

Atmospheric Environmental Protection Department, National Institute for Resources and Environment, 16-3 Onogawa, Tsukuba, Ibaraki 305-8569, Japan

Addition of trace SO_2 (*ca*. 8 ppm) to a reactant gas **containing NO substantially enhanced the oxidation rate of** carbon black mixed with a $Pt/SiO₂$ catalyst, which is attributed to SO_3 (or H_2SO_4) catalyzing the oxidation of carbon by NO₂.

The emission of soot from diesel engines is a serious environmental problem. Among the many catalysts for soot oxidation that have so far been reported, Pt exhibits high levels of catalytic activity.1–5 Platinum is thought to promote soot oxidation indirectly, *i*.*e*. by oxidizing the NO normally coexisting in the exhaust gas into $NO₂$, which actually oxidizes soot to CO and $CO₂$. Here we report the effect of adding $SO₂$ to the reactant gas, which dramatically promoted the oxidation of carbon black.

Platinum (1 wt%) supported on silica gel $(Pt/SiO₂)$ was prepared by impregnating $SiO₂$ (0.1 to 0.25 mm in diameter, 374 m^2 g⁻¹) with a solution of Pt(NH₃)₄(OH)₂, followed by drying, reduction with H_2 at 400 °C and calcination in air at 600 °C. Commercially available carbon black (CB; Nippon Tokai carbon 7350F; primary particle size = 28 nm; specific surface area = $80 \text{ m}^2 \text{ g}^{-1}$; CHN analysis: C, 97.99; H, 1.12; N, 0.06% ; H₂O = 0.58 wt%) was used as model soot. The Pt/SiO₂ catalyst (0.5 g) and CB powder (0.005 g) were simply mixed together with a spatula and placed in the reactor. Mixing in this way results in a 'loose' contact between the catalyst and carbon, which is thought to be close to that found in practical cases.⁶ Temperature-programmed reactions (TPRs) were carried out in a tubular quartz reactor. Reactant gases— 10% O₂, 7% H_2O , 0 or 1000 ppm NO, 0 to 100 ppm SO_2 and N_2 , a composition which is typical of diesel exhaust gas, except for the absence of $CO₂$ were passed through the mixture of catalyst and CB at a flow rate of 0.5 dm^3 (STP) min⁻¹. The temperature of the reactor was raised from 80 to 700 °C by 10 °C min⁻¹. A non-dispersive IR gas analyzer was used to continuously measure the concentrations of CO and $CO₂$ emitted by the carbon oxidation. In addition, TPR measurements using an FTIR gas analyzer were separately conducted to measure the concentrations of NO, NO₂ and $SO₂$ in the product gas.

Fig. 1 shows the effect of the composition of the reactant gas on the $CO₂$ emission during the TPR. The CO concentration was almost zero in all cases (≤ 0.8 ppm). In the gas mixture $N_2 + O_2$ + H₂O [Fig. 1(O)], carbon was not oxidized at all below 500 °C, above which temperature the reaction rate increased abruptly and the oxidation was finished at 675 °C. Platinum had no accelerating effect on the carbon gasification under these conditions, since the TPR result using $SiO₂$ alone (not shown) was almost the same as that shown in Fig. 1(\odot). Fig. 1(\bullet) shows the result when 100 ppm $SO₂$ was added to the reactant gas. Sulfur dioxide had no effect on the oxidation under these conditions. On the other hand, the addition of NO instead of SO_2 brought about an acceleration of carbon oxidation Fig. $1(\triangle)$. The initial temperature, which we define as the point where the $CO₂$ concentration exceeds 100 ppm, was about 200 $^{\circ}$ C lower than that in $N_2 + O_2 + H_2O$. In the case of SiO_2 alone, such a promotional effect of NO was not observed, but when $NO₂$ was used instead of NO, the $CO₂$ emission curve shifted to nearly the

same temperature region as Fig. $1(\triangle)$. These results suggest that $NO₂$, which is formed by the oxidation of NO over Pt, oxidizes carbon black more strongly than O_2 . The effect of NO_2 on soot oxidation has been already reported by several researchers.4,5,7

The striking effect of SO_2 was observed when it was further added to $N_2 + O_2 + H_2O + NO$ over the Pt/SiO₂. By adding only 1 ppm of SO_2 , the CO_2 emission level at 350 °C increased by 210 ppm [Fig. 1(\triangle)]. As the concentration of SO₂ was increased, a new peak appeared at around this temperature; when the SO_2 concentration exceeded 23 ppm, CO_2 emission was at its maximum at this temperature [Fig. 1(\Diamond) and (\blacklozenge)]. The temperature of maximum \overline{CO}_2 emission was about 300 °C lower than that in the $N_2 + O_2 + H_2O$ mixture and more than 200 °C lower than that in $N_2 + O_2 + H_2O + NO$. The initial temperature decreased to as low as 250 °C. The $CO₂$ concentrations at 350 °C in the experiments containing NO were plotted as a function of $SO₂$ content in the reactant gas (Fig. 2). The $CO₂$ concentration dramatically increases until the SO2 content reaches 8 ppm and then almost levels off with further increases in $SO₂$ content. Such a promotional effect of SO_2 is not observed with SiO_2 alone, even when NO_2 is used instead of NO.

Fig. 1 TPR profiles of $Pt/SiO₂$ in carbon oxidation. Conditions; catalyst = 0.5 g, carbon = 0.005 g, flow rate = 0.5 dm³ min⁻¹ (0 °C, 1 atm) (**X** = 10%) O_2 + 7% H₂O in N₂, **Y** = 10% O_2 + 7% H₂O + 1000 ppm NO in N₂): (○) **X**, (●) **X** + 100 ppm SO₂, (△) **Y**, (▲) **Y** + 1 ppm SO₂, (□) **Y** + 4 ppm SO₂, (\blacksquare) \mathbf{Y} + 8 ppm SO₂, (\diamondsuit) \mathbf{Y} + 23 ppm SO₂, (\spadesuit) \mathbf{Y} + 100 ppm SO₂.

*Chem. Commun***., 1998 2255**

Fig. 2 Effect of the concentration of SO₂ on the activity of Pt/SiO₂ catalyst in carbon oxidation ($T = 350$ °C). Conditions are as in Fig. 1.

Separate TPR experiments using an FTIR gas analyzer were also carried out under the conditions of 10% O_2 , 0.5% H_2O , 1000 ppm NO, 100 ppm SO_2 and N_2 . Over Pt/SiO₂, NO starts to be oxidized to NO_2 at 160 °C. The concentration of NO_2 reached a maximum at 330 °C and then decreased in accordance with levels expected from the thermodynamic equilibrium between NO_2 , NO and O_2 . The concentration of SO_2 in the product gas started to decrease at 165 °C, reached a negligible level between 220 to 500 °C, and then gradually increased in accordance with levels expected from the thermodynamic equilibrium between SO_3 , SO_2 and O_2 . Evidently, the oxidation of NO into NO_2 and SO_2 into SO_3 (or H_2SO_4 below 300 °C) proceeded over $Pt/SiO₂$. Incidentally, the oxidation of $SO₂$ to $SO₃$ by gaseous $NO₂$ did not proceed to an observable extent over SiO_2 alone under the conditions of 10% O_2 , 0.5% H_2O , 1000 ppm $NO₂$, 100 ppm $SO₂$ and $N₂$. Nitrogen dioxide is regarded as an oxidizer that directly attacks the carbon and turns into NO; the NO may be oxidized to $NO₂$ over $Pt/SiO₂$ and reused. On the other hand, the outstanding effect of SO_2 with Pt/ $SiO₂$ only appeared in the presence of NO suggesting that $SO₃$, produced from $SO₂$ over Pt, plays a role as a catalyst that accelerates the oxidation of carbon by $NO₂$.

To confirm this possible role of $SO₃$ (or $H₂SO₄$), we tested the effect of $NO₂$ and $H₂SO₄$ addition on the carbon oxidation over SiO_2 alone. When 1000 ppm NO_2 and 100 ppm H_2SO_4 were added to the feed containing 10% \overline{O}_2 + 7% H₂O in N₂, the oxidation was initiated at 280 \degree C and there were peaks in CO₂ concentration at 380 and 490 °C. By contrast the addition of 100 ppm H_2SO_4 alone did not have any effect on the CO_2 emission rate: the initial and peak temperatures were around 560 and 680 $^{\circ}$ C, respectively. These results strongly suggest that SO₃ (or H2SO4) formed over Pt surfaces catalyzes the oxidation of carbon by $NO₂$.

Lur'e *et al.*⁷ reported that the process of $CO₂$ formation from the interaction of $NO₂$ with soot proceeds through the oxidation of active sites on the soot surface, *via* abstraction of oxygen atoms from $NO₂$, to produce partially oxidized surface species ($>$ C=O) and NO. We suspect that the effect of SO₃ (or H₂SO₄) can be attributed to the enhancement of decomposition of the partially oxidized surface species. It is well known that H_2SO_4 promotes dehydration and decarboxylation of organic compounds.⁸ The partially oxidized surface species created by $NO₂$ may be rather inactive against further oxidation, but can be readily decomposed by a strong acid such as SO_3 or H_2SO_4 . After this secondary process, the ability of the carbon surface to be oxidized may be restored.

Notes and References

† E-mail: junko@nire.go.jp

- 1 G. Neri, L. Bonaccorsi, A. Donato, C. Milone, M. Grazia M. and A. M. Visco, *Appl*. *Catal*. *B*, 1997, **11**, 217.
- 2 H. J. Stein, *Appl*. *Catal*. *B*, 1996, **10**, 69.
- 3 M. Hosoya and M. Shimoda, *Appl*. *Catal*. *B*, 1996, **10**, 83.
- 4 P. Hawker, N. Myers, G. Huthwohl, H. T. Vogel, B. Bates, L. Magnusson and P. Bronnenberg, SAE Technical Paper Series, 970182, 1997.
- 5 B. J. Cooper, H. J. Jung and J. E. Thoss, *US Pat*. 4902487. 6 J. P. A. Neeft, O. P. Pruissen, M. Makkee and J. A. Moulijn, *Appl*. *Catal*.
- *B*, 1997, **12**, 21
- 7 B. A. Lur'e and A. V. Mikhno, *Kinet*. *Catal*., 1997, **38**, 535
- 8 *Advanced Organic Chemistry*, *Reactions*, *Mechanisms and Structure*, 4th edn., ed. J. March, Wiley, New York, p. 389, p. 563, p. 1011

Received in Cambridge, UK, 20th July 1998; 8/05598J