Chloride ion effects on kinetic resolution in Pd-catalysed allylic alkylation

Guy C. Lloyd-Jones* and Susanna C. Stephen

School of Chemistry, Cantock's Close, Bristol, UK BS8 1TS. E-mail: guy.lloyd-jones@bris.ac.uk

Received (in Cambridge, UK) 7th August 1998, Accepted 22nd September 1998

Chloride ion (5 mol%) accelerates and stabilises the oxidative addition of the slow-reacting enantiomer of cyclopentenyl pivaloate to Pd^0 complexes bearing the Trost modular ligand.

Astute chemical design and serendipity have led to a range of very effective ligands for enantioselective Pd-catalysed allylic alkylation.¹ Cyclic substrates have proven the hardest systems to substitute with high enantiomeric excess (ee) and the modular

ligand systems of Trost,² *e.g.* (R,R)-1, have been almost³ uniquely successful for this reaction type.

We recently reported a mechanistic study⁴ of the 'memory effect'⁵ in the '[Pd(*R*,*R*)-1]'-catalysed reaction of **2a** with sodio dimethyl malonate (NaCHE₂; $E = CO_2CH_3$) in THF to give (*S*)-**3**. Herein we report on the effect of catalytic chloride ion on the kinetic resolution⁶ of **2** and **4** by '[Pd(*R*,*R*)-1]'.

Pro-catalysts generated *in situ* from a bidentate ligand (L₂) and [Pd(allyl)Cl]₂ are often employed in Pd-catalysed allylic alkylation with NaCHE₂. Entry into the catalytic cycle is assumed to proceed *via* alkylation–reduction of [(L₂)Pd^{II}- π allyl][Cl] to generate NaCl, allyl-CHE₂ and '[Pd(L₂)]'.⁷ Using 2.25 equiv. NaCHE₂ and 5 mol% of '[Pd(*R*,*R*)-1]' generated *in situ* from (*R*,*R*)-1 and [Pd(allyl)Cl]₂ (1/Pd = 3/2) complete conversion of both enantiomers of deuterium labelled pivaloate (\pm)-**4b** to a mixture of isotopomeric α - and γ -**5** occurs, in THF, within 10 min at room temp. (Table 1, entry 1).

When the reaction was quenched after 5 s, there was evidence of a moderate kinetic resolution $(k_S/k_R \approx 9)$: recovered 4b (25%) was 88% ee (*R*) and α/γ -5 were obtained in 38% yield.[†] However, when the '[Pd(R,R)-1]' was generated under chloride-free conditions⁸ from $[Pd_2dba_3, CHCl_3]$ (dba = dibenzylideneacetone) or $[Pd(allyl)(MeCN)_2][OTf] (1/Pd = 3/2)$ the rate of reaction was reduced and kinetic resolution enhanced. After 10 min, α -5 and γ -5 arising exclusively (\geq 97%) from matched (S)-4b were obtained in 38–43% yield and mismatched (R)-4b had been partially resolved (47–51% ee) (Table 1, entry 2). After a further 2 h (R)-4b was recovered in 28-32% yield and \geq 90% ee.[±] There was no racemisation or further conversion⁹ of (R)-4b (despite a large excess of NaCHE₂) over a period of 48 h. However, with substoichiometric (0.5 equiv.) NaCHE2 rapid $(\leq 60 \text{ s})$ partial resolution of (\pm) -2c was followed by Pdcatalysed racemisation of remaining (R)-2c (Fig. 1).

With excess nucleophile, labelled substrates were recovered unscrambled—there was no evidence of the γ -²H isotopomer of (*R*)-**4b** and reaction of (±)-**6b** (95% ¹⁸O) afforded (*R*)-**6b** (≥90% ee) and no acyl-¹⁸O isotopomer **7b**. These results suggest non-reversible Pd-allyl formation from (*R*)-**4** and (*R*)-**6** under turn-over conditions¹⁰§ and implicate the nucleophile in the catalyst deactivation process.

The efficient kinetic resolution of (\pm) -4b by '[Pd-(*R*,*R*)-1]' is not in itself surprising—the tight 'chiral pocket'¹¹ of (*R*,*R*)-1 is known to effect highly enantioselective (*matched*) ionisation of *meso*-diesters 8.^{2b} More remarkable however, is that 5 mol% chloride ion increases the conversion (not *via* racemisation) of mismatched¹² (*R*)-4b (Table 1, compare entries 1 and 2) and inhibits catalyst deactivation. The importance of halide ions, at

Table 1 The effect of chloride on kinetic resolution with Pd^{II} vs. Pd⁰ catalyst pre-cursors, in THF and CH₂Cl₂

D O ₂ CBu ^t (±)-4b	2.25 NaCHE ₂ THF, 10–20 min 7.5 mol% (<i>R</i> , <i>R</i>)-1 5 mol% Pd	α Ε D Ε (<i>S</i>)-α- 5	E (<i>R</i>)-γ-5	D O ₂ CBu ^t (<i>R</i>)-4b
Entry	Pd^{α}	Yield (%) (<i>R/S</i>) (<i>S</i>)-α- 5	(<i>R</i>)-γ-5	(<i>R</i>)- 4 b
1	[Pd(allyl)Cl] ₂	50 (42:58)	29 (36:64)	0()
2 3	Pd ^{II} a or Pd ⁰ a Pd ^{II} a + dba ^b + LiCl ^c or Pd ⁰ a + LiCl ^c	32 (< 5:95) 33 (< 5:95)	11 (>95:5) 14 (>95:5)	36 (74:26) 17–28 (>95:5)
4	$Pd^{II \ a} + LiCl^{c}$	46 (43:57)	31 (39:61)	0 ()
5^d	Pd ^{II} a	20 (11:89)	5 (66:34)	74 (64:36)
6^d	[Pd(allyl)Cl] ₂	60 (33:67)	27 (19:81)	0 (—)
a Pd ^{II} = [Pd(allyl)(MeCN) ₂)[OTf]; Pd ⁰ = Pd ₂ dba ₃ ·CHCl ₃ . ^b 7.5 mol% dba. ^c 5 mol% LiCl. ^d In CH ₂ Cl ₂ , 145 min.				

Fig. 1 Kinetic resolution (**A**) then racemisation (**B**) of (\pm) -2c on reaction with 0.5 equiv. NaCHE₂, catalysed by chloride-free pro-catalyst generated from 7.5 mol% (*R*,*R*)-1 and 5 mol% [Pd(allyl)(MeCN)₂][OTf].

both the Pd⁰ and Pd^{II} oxidation state in cross-coupling and Heck reactions is well documented.¹³ However, although a variety of halide effects have been reported in Pd-catalysed allylic substitution¹⁴ these are all mechanistically implicated at the Pd^{II}- π -allyl stage.

To gain further information, we compared the effect of chloride on the selectivity with different pro-catalyst systems in THF. Use of 5 mol% of the Pd⁰ pro-catalyst derived from (*R*,*R*)-1, [Pd₂dba₃·CHCl₃] and LiCl (1/Pd/Cl = 3/2/2) resulted in even more effective kinetic resolution giving (*R*)-4b (28% yield) in \geq 95% ee in under 10 min (Table 1, entry 3). At this point (*S*)- α -5 (\geq 95% ee) and (*R*)- γ -5 (\geq 90% ee) were derived almost exclusively (>97%) from matched (*S*)-4b and this suggests $k_{S'}/k_R \geq$ 100.¶ However, complete conversion of residual (*R*)-4b to α/γ -5 occurred in less than 12 h to give α/γ -5 in 74% yield. Hence the LiCl retarded catalyst deactivation but not kinetic resolution.

With 5 mol% of the Pd^{II} pro-catalyst derived from (R,R)-1, [Pd(allyl)(MeCN)₂][OTf] and LiCl (1/Pd/Cl = 3/2/2), complete conversion of (±)-4b to 5 occurred within 10 min (Table 1, entry 4). When dba (7.5 mol%) was also added to the procatalyst mixture, catalysis slowed dramatically and the system behaved similarly to that derived from a Pd⁰ source (Table 1, entry 3). When the LiCl was omitted initially but added after 10 min of catalysis, powerful kinetic resolution of (±)-4b and catalyst deactivation occurred in the first 10 min and, on addition, the LiCl did not reactivate the catalyst.

The effect of solvent was also briefly studied. In CH_2Cl_2 reactions were slower. There was moderate kinetic resolution ($k_S/k_R ca. 9$) under chloride-(ion)-free conditions (Table 1, entry 5) and a greater 'memory effect' in the presence of 5 mol% chloride (Table 1, entry 6).

Taken together, the results suggest the following: (i) chloride coordination to Pd⁰ results in a more reactive and less selective palladate-type catalyst, (ii) palladate formation is disrupted by dba, and (iii) in the absence of chloride and in the presence of NaCHE₂, mismatched ionisation of slower reacting (R)-4b tends to lead to catalyst decomposition.

Generous donations from the Zeneca Strategic Research Fund are gratefully acknowledged. S. C. S thanks the University of Bristol for a Postgraduate Scholarship.

Notes and references

[†] The deuterium label and stereospecific mechanism allows the distinction of **5** arising from (*R*)- and (*S*)-**4**. Ratios were determined by NMR analysis in C₆D₆ with (+)-Eu(hfc)₃: (*S*)-**4b**/(*R*)-**4b** by ¹H NMR analysis and (*S*)- α -5/(*R*)- γ -5/(*R*)- α -5/(*S*)- γ -5 by ¹³C NMR analysis (see ref. 4).

[‡] Analogous results were obtained with (±)-**4a** and (±)-**4c**. Pd-catalysed reaction (5 mol% [(dppf)Pd(allyl)][OTf], THF, 25 °C, 60 s) of the resultant (*R*)-**4a** with 2.25 equiv. NaCHE₂ afforded (*R*)- α -**5** and (*S*)- γ -**5** exclusively (>96%).

§ Reversible ionisation cannot be completely ruled out if a very tight ionpair $\{[(1)-Pd-(\eta^x-c-C_5H_7)]^+[O_2CCMe_3]^-\}$ is formed and there is slow relaxation of nucleofuge orientation (*i.e.* equilibration of ¹⁸O/¹⁶O) relative to exclusive internal return at the *mismatched* (α) carbon.

¶ For 98% selective conversion of (*S*)-**4b** over (*R*)-**4b** to α/γ -**5** at 43% conversion, $(k_S/k_R)_{calc} = 107$. This calculation assumes that the slow mismatched ionisation of (*R*)-**4** gives no side products. Thus (k_S/k_R) may be much lower.

- G. Consiglio and R. M. Waymouth, *Chem. Rev.*, 1989, **89**, 257; C. G. Frost, J. Howarth and J. M. J. Williams, *Tetrahedron: Asymmetry*, 1992, **3**, 1089; B. M. Trost and D. L. Van Vranken, *Chem. Rev.*, 1996, **96**, 395.
- 2 (a) B. M. Trost and R. Radinov, J. Am. Chem. Soc., 1997, 119, 5962; (b)
 B. M. Trost and D. E. Patterson, J. Org. Chem., 1998, 63, 1339 and references cited therein.
- 3 G. Helmchen, S. Kudis, P. Sennhenn and H. Steinhagen, Pure App. Chem., 1997, 69, 513.
- 4 G. C. Lloyd-Jones and S. C. Stephen, *Chem. Eur. J.*, 1998, in the press.
- 5 (a) B. M. Trost and R. C. Bunt, J. Am. Chem. Soc., 1996, 118, 235; (b)
 J.-C. Fiaud and J. L. Malleron, *Tetrahedron Lett.*, 1981, 22, 1399; (c) T. Hayashi, M. Kawatsura and Y. Uozumi, J. Am. Chem. Soc., 1998, 120, 1681.
- 6 See e.g. H.-J. Gais, H. Eichelmann, N. Spalthoff, F. Gerhards, M. Frank and G. Raabe, *Tetrahedron: Asymmetry*, 1998, 9, 235; T. Hayashi, A. Yamamoto and Y. Ito, J. Chem. Soc., Chem. Commun., 1986, 1090.
- 7 J. Tsuji, Palladium Reagents and Catalysts, Wiley, Chichester, 1995.
- 8 The CHCl₃ in Pd₂dba₃·CHCl₃ can sometimes act as a source of chloride: see O. Loiseleur, P. Meier and A. Pfaltz, *Angew. Chem., Int. Ed. Engl.*, 1996, **35**, 200.
- 9 Material balance indicates some decomposition of (*R*)-4b; *ca.* 25% isolated yield after 2 days but only *ca.* 5% conversion to (*R*)- α and (*S*)- γ -5. We have not been able to detect β -H elimination products: see G. R. Cook and P. S. Shanker, *Tetrahedron Lett.*, 1998, **39**, 4991.
- 10 For an example of tight/orientated ion-pairing with slow equilibration of ¹⁸O/¹⁶O in a carboxylate, see H. L. Goering, M. M. Pombo and K. D. McMichael, J. Am. Chem. Soc., 1963, 85, 965.
- 11 B. M. Trost, Acc. Chem. Res., 1996, 29, 355.
- 12 In desymmetrisation reactions of **8**, catalysts derived from [Pd(allyl)Cl]₂ gave less satisfactory results than those derived from [Pd₂dba₃.CHCl₃]: see ref. 2(*b*).
- C. Amatore, A. Jutand and A. Suarez, J. Am. Chem. Soc., 1993, 115, 9531; L. E. Overman and D. J. Poon, Angew. Chem., Int. Ed. Engl., 1997, 36, 518; W. J. Scott and J. K. Stille, J. Am. Chem. Soc., 1986, 108, 3033; T. Kamikawa and T. Hayashi, *Tetrahedron Lett.*, 1997, 38, 7087; K. Rossen, P. J. Pye, A. Maliakal and R. P. Volante, J. Org. Chem., 1997, 62, 6462.
- 14 see for example U. Burckhardt, M. Baumann and A. Togni, *Tetrahedron: Asymmetry*, 1997, 8, 155; M. Kawatsura, Y. Uozomi and T. Hayashi, *Chem. Commun.*, 1998, 217; A. Gogoll, J. Örnebro, H. Grennberg and J.-E. Bäckvall, *J. Am. Chem. Soc.*, 1994, 116, 3631; ref. 5(c).

Communication 8/063241