A functionalized ruthenium(II)-bis-terpyridine complex as a rod-like luminescent sensor of zinc(II)

Francesco Barigelletti,*a Lucia Flamigni,a Giuseppe Calogero,a Leif Hammarström, b Jean-Pierre Sauvage*c and Jean-Paul Collin*c

^a Istituto FRAE-CNR, Via P. Gobetti 101, I-40129 Bologna, Italy

^b Department of Physical Chemistry, University of Uppsala, Box 532, S-75121 Uppsala, Sweden

^c Laboratoire de Chimie Organo-Minérale, Université Louis Pasteur, Faculté de Chimie, 4 Rue Blaise Pascal, F-67008 Strasbourg, France

Received (in Basel, Switzerland) 12th August 1998, Accepted 23rd September 1998

The nearly non-luminescent ruthenium(Π)-terpyridine chromophore, functionalized with an uncoordinated terpyridine fragment, 2, undergoes Zn(Π)-induced association leading to a luminescent rod-like 2 : Zn²⁺ : 2 species with a luminescence enhancement factor, EF \geq 10.

In the field of transition metal chemistry the assembly of Ru(π), Os(π), and Re(π) complexes to yield polymetallic species is being pursued both for fundamental and practical reasons.^{1–4} Examples include (i) the investigation of energy and electron transfer processes in geometrically well defined systems where the metal-based components are held together by covalent bonds,^{5–7} (ii) the exploitation of spectroscopic properties (particularly luminescence) for testing the sensing ability of appended groups towards protons, cations, and anions,^{1–3} and (iii) the building up of dendritic species comprising tens of metal centres for light-harvesting and energy-collection purposes.^{8,9}

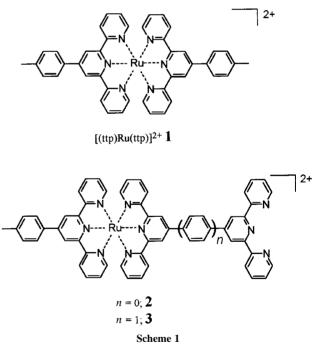
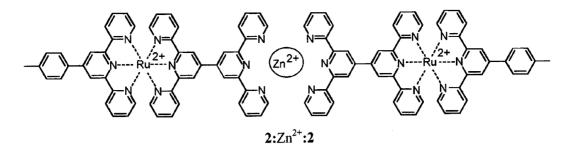
An interesting Ru-based chromophore to be employed in such type of assemblies is $[Ru(tpy)_2]^{2+}$ {tpy is 2,2':6',2''terpyridine; Scheme 1 shows the related complex $[(tp)Ru(ttp)]^{2+}$ 1, containing the 4'-tolyl-tpy ligand, ttp}.¹⁰ This is because substitution at the 4' position of tpy allows the construction of geometrically well-defined rod-like rigid species.¹¹ The luminescence properties of both $[Ru(tpy)_2]^{2+}$ and 1 are rather poor (their room temperature luminescence quantum yield and lifetime in acetonitrile solvent are $\Phi \approx 10^{-5}$ and $\tau < 1 \times 10^{-9}$ s, respectively¹⁰) but the incorporation of these or related complexes in polynuclear species may result in significant luminescence improvements.^{7,12}

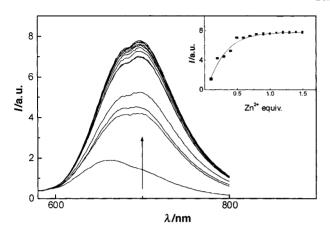
By using luminescence spectroscopy we have investigated the properties of acetonitrile–water solutions of the complexes $[(ttp)Ru(tpy-tpy)]^{2+}$ **2** and $[(ttp)Ru(tpy-ph-tpy)]^{2+}$ **3**, Scheme 1,† in the presence of Zn^{2+} [ph = 1,4-phenylene]. We found that Zn^{2+} coordination of the free tpy fragments of **2**¹³ is accompanied by a substantial enhancement of luminescence intensity; by contrast no such effect is observable for **3**. Luminescence results are collected in Table 1. In addition we could use luminescence spectroscopy to monitor the formation of the tripartite species, **2** : Zn^{2+} : **2**.

The absorption spectra of **2** and **3** in acetonitrile–water (1:1 v/v) display intense absorption bands in the UV region (250–350 nm, $\varepsilon \approx 10^5 \text{ M}^{-1} \text{ cm}^{-1}$) and moderately intense

bands in the visible region (450–550 nm, $\varepsilon \approx 10^4 \text{ M}^{-1} \text{ cm}^{-1}$). The former bands are due to ligand centered (¹LC) transitions and those occurring in the visible are due to metal-to-ligand charge-transfer (¹MLCT) transitions, of Ru→L electronic configuration.^{6,11} Owing to the presence of the uncoordinated tpy fragment in 2 and 3, addition of Zn²⁺ causes¹³ some changes in the absorption features. These changes are only modest in the region of the ligand-centred transitions of both complexes; however, for 2 the longest-wavelength band maximum (MLCT region) undergoes a bathochromic shift from 491 to 498 nm (for 3 the corresponding absorption maximum at 491 nm is not affected by the presence of Zn²⁺). This indicates that for 2, the Zn²⁺ ion causes stabilization of the lowest-lying Ru→L CT energy level, which involves the tpy-tpy fragment, Scheme 1. For 3 no such effect is apparent.

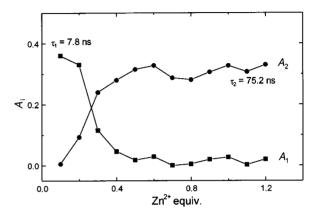
The excited states responsible for the luminescence, Table 1, are formally triplet levels of $Ru \rightarrow L CT$ nature, and involve in


Table 1 Luminescence properties^a

		τ/ns	$10^4 \Phi^d$	In the presence of Zn^{2+b}		
	λ_{\max}^{c}/nm			$\lambda_{\max}^{c/nm}$	τ∕ns	$10^4 \mathbf{\Phi}^d$
$[(ttp)Ru(ttp)]^{2+}$ (1) ^e	640	0.9	0.32			
$[(ttp)Ru(tpy-tpy)]^{2+}$ (2)	660	6.3	1.6	710	84	16
$[(ttp)Ru(tpy-ph-tpy)]^{2+}$ (3)	648	2.4	0.6	650	3.3	0.9
a Room temperature earsted easter	aitrila water (1 · 1 v/v	h Mora than 2	aquin C Pand mayin	o for uncorrected on	aatra d Erom aar	eastad spaatra & A aatanitrila

^a Room temperature aerated acetonitrile–water (1:1 v/v). ^b More than 3 equiv. ^c Band maxima for uncorrected spectra. ^d From corrected spectra. ^e Acetonitrile solvent, ref. 10.


Fig. 1 Luminescence spectrum of complex **2** after Zn^{2+} addition. Excitation wavelength is at 494 nm, where the changes in absorbance intensity are within 5%. The inset shows the luminescence intensity taken at 700 nm *vs.* the added Zn^{2+} equivalents.

each case the larger size ligand present on either side of the Ru(π) centre, *i.e.* tpy-tpy and tpy-ph-tpy for **2** and **3**, respectively.¹⁰ The luminescence properties gathered in Table 1 indicate that Zn²⁺ remarkably affects the luminescence band maximum, intensity and lifetime for the case of **2**. In contrast, for **3** no substantial changes can be registered. This different behaviour may be understood in terms of the role of the phenylene group in decoupling the Ru-based chromophore and the tpy appended site.¹⁴

The results of a titration experiment on the luminescence intensity of **2** are illustrated in Fig. 1. For this complex, subsequent additions of Zn^{2+} cause gradual shifts of the band maximum from 660 to 700 nm, with a concomitant increase of the luminescence intensity. The inset of Fig. 1 shows that the change in luminescence intensity at 700 nm *vs.* the Zn^{2+} concentration is consistent with formation of a **2** : Zn^{2+} : **2** species.

The same conclusion is supported by the time resolved luminescence properties exhibited upon titration of complex **2** with Zn²⁺. The luminescence decayed according to a dual exponential law, $I(t) = A_1 \exp(-t/\tau_1) + A_2 \exp(-t/\tau_2)$, and a global analysis as performed on 12 decay profiles gave $\tau_1 = 7.8$ ns and $\tau_2 = 75.2$ ns, with varying amplitudes (*A*) depending on the added equivalents of Zn²⁺, see Fig. 2. Comparison of the results depicted in Fig. 2 with the luminescence properties reported in Table 1 suggests that the two species responsible for the dual exponential behavior are **2** and **2** : Zn²⁺ : **2**. Based on the coordination number of 6 for the Zn(II) centre and on the geometry of the tpy coordination site,^{7,13} the **2** : Zn²⁺ : **2** complex is most likely linearly arranged with an estimated Ru–Ru distance of 2.2 nm, Scheme 2.

With respect to the starting complex 2, it is noteworthy that the 2 : Zn^{2+} : 2 complex exhibits improved luminescence properties, EF = 10 (with respect to 2 in neat acetonitrile, $EF \approx$ 50). This is due to the delocalizing ability of the tpy-tpy ligand¹² combined with the stabilizing effect of the Zn^{2+} centre. Our results, which are in line with those of a recent report on polynuclear complexes where the bridging ligands contain the highly delocalizing ethynyl group,⁷ suggest that it is possible to use Ru(π)-terpyridine derivatives both to develop Zn^{2+} lumines-

Fig. 2 Changes in the relative amplitudes A_1 and A_2 for the dual luminescence decay of complex 2 (concentration 1×10^{-5} M) upon Zn^{2+} addition. The decays are monitored over the full emission range.

cent sensors and to construct nanometric rod-like assemblies with tuneable luminescence properties.

Notes and references

[†] The synthesis and characterization of complexes **1**, **2**, and **3** were described previously.¹¹ Absorption and luminescence spectra of dilute solutions (≈ 10^{-5} M) in acetonitrile–water (1:1 v/v) were recorded with a Perkin Elmer Lambda 5 spectrophotometer and with a Spex Fluorolog II spectrofluorimeter, respectively. Uncorrected luminescence band maxima are used throughout the text. In order to determine corrected band maxima and luminescence quantum yields we followed a procedure described in ref. 12. Luminescence lifetimes were obtained with an IBH single-photon-counting apparatus. The titration experiments were conducted with Gilson P20 Pipetman microburettes by using concentrated solutions (10^{-3} M) of ZnCl₂.

- Transition Metals in Supramolecular Chemistry, ed. L. Fabbrizzi and A. Poggi, Kluwer, Dordrecht, 1994.
- 2 J.-M. Lehn, Supramolecular Chemistry, VCH, Weinheim, 1995.
- 3 A. P. de Silva, H. Q. N. Gunaratne, T. Gunnlaugsson, A. J. M. Huxley, C. P. McCoy, J. Rademacher and T. E. Rice, *Chem. Rev.*, 1997, 97, 1515.
- 4 E. C. Constable, Chem. Commun., 1997, 1073.
- 5 V. Balzani, A. Juris, M. Venturi, S. Campagna and S. Serroni, *Chem. Rev.*, 1996, **96**, 759.
- 6 F. Barigelletti, L. Flamigni, J.-P. Collin and J.-P. Sauvage, *Chem. Commun.*, 1997, 333.
- 7 A. Harriman and R. Ziessel, Chem. Commun., 1996, 1707.
- 8 V. Balzani, S. Campagna, G. Denti, A. Juris, S. Serroni and M. Venturi, Acc. Chem. Res., 1998, 31, 26.
- 9 F. Vögtle, Supramolecular Chemistry, Wiley, Chichester, 1993.
- 10 J.-P. Sauvage, J.-P. Collin, J.-C. Chambron, S. Guillerez, C. Coudret, V. Balzani, F. Barigelletti, L. De Cola and L. Flamigni, *Chem. Rev.*, 1994, 94, 993.
- 11 F. Barigelletti, L. Flamigni, V. Balzani, J.-P. Sauvage, J.-P. Collin, A. Sour, E. C. Constable and A. M. W. Cargill Thompson, J. Am. Chem. Soc., 1994, 116, 7692.
- 12 L. Hammarström, F. Barigelletti, L. Flamigni, M. T. Indelli, N. Armaroli, G. Calogero, M. Guardigli, A. Sour, J.-P. Collin and J.-P. Sauvage, J. Phys. Chem. A, 1997, 101, 9061.
- 13 R. H. Holyer, C. D. Hubbard, S. F. A. Kettle and R. G. Wilkins, *Inorg. Chem.*, 1966, 5, 622.
- 14 F. Barigelletti, L. Flamigni, M. Guardigli, A. Juris, M. Beley, S. Chodorowski-Kimmes, J.-P. Collin and J.-P. Sauvage, *Inorg. Chem.*, 1996, 35, 136.

Communication 8/06389C