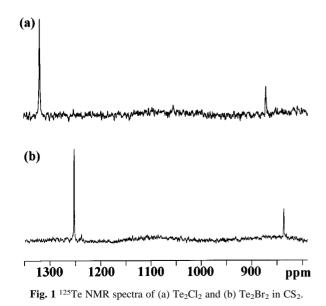
## Novel tellurium halides Te<sub>2</sub>Cl<sub>2</sub> and Te<sub>2</sub>Br<sub>2</sub>

## Jarkko Pietikäinen and Risto S. Laitinen

Department of Chemistry, University of Oulu, Linnanmaa, FIN-90570 Oulu, Finland. E-mail: risto.laitinen@oulu.fi

Received (in Basel, Switzerland) 26th May 1998, Accepted 23rd September 1998

Novel  $Te_2Cl_2$  and  $Te_2Br_2$  were prepared by the reaction of  $Li_2Te$  and  $TeX_4$  and characterized by mass spectroscopy and <sup>125</sup>Te NMR spectroscopy, and by successful syntheses of 1,2-Te<sub>2</sub>S<sub>5</sub> and 1,2-Te<sub>2</sub>Se<sub>5</sub>.


Disulfur and diselenium dihalides are relatively stable<sup>1</sup> and form a useful class of reagents for many synthetic applications. The existence of mixed selenium–sulfur dihalides has also been reported.<sup>1/,2</sup> Here we describe a facile synthesis of Te<sub>2</sub>Cl<sub>2</sub> and Te<sub>2</sub>Br<sub>2</sub> that have turned out to be surprisingly stable,<sup>†</sup> though the phase diagrams of the Te–TeCl<sub>4</sub> and Te–TeBr<sub>4</sub> systems do not give any indications about the existence of Te<sub>2</sub>Cl<sub>2</sub> and Te<sub>2</sub>Br<sub>2</sub>.<sup>4</sup> The closest known tellurium halides of this type are polymeric (Te<sub>2</sub>Cl)<sub>x</sub>, (Te<sub>3</sub>Cl<sub>2</sub>)<sub>x</sub> (Te<sub>2</sub>Br)<sub>x</sub> and (Te<sub>2</sub>I)<sub>x</sub>.<sup>5</sup>

 $Te_2Cl_2$  and  $Te_2Br_2$  were prepared by reducing elemental tellurium with superhydride and treating the resulting telluride with appropriate tellurium tetrahalogenide [eqn. (1)].<sup>‡</sup>

Te 
$$\xrightarrow{\text{LiBHEt}_3} 1/x\text{Te}_x^{2-}$$
  
Te $_x^{2-} + x\text{TeX}_4 \rightarrow x\text{Te}_2\text{X}_2 + 2x\text{X}^-$  (X = Cl, Br) (1)

Ditellurium dichloride was obtained as a yellow liquid, and ditellurium dibromide as an orange–red liquid. Both  $Te_2Cl_2$  and  $Te_2Br_2$  should be stored under an inert atmosphere.  $Te_2Br_2$  however, is stable for hours at room temperature.  $Te_2Cl_2$  is not as stable as  $Te_2Br_2$ , but it can also be stored for hours, especially in organic solutions. Chlorinated solvents, however, should be avoided.

Both Te<sub>2</sub>Cl<sub>2</sub> and Te<sub>2</sub>Br<sub>2</sub> exhibit one major <sup>125</sup>Te resonance in their respective NMR spectra (Fig. 1).§ The <sup>125</sup>Te chemical shift of Te<sub>2</sub>Cl<sub>2</sub> in CS<sub>2</sub> is at 1336 ppm and that of Te<sub>2</sub>Br<sub>2</sub> at 1253 ppm. The chemical shift of Te<sub>2</sub>Cl<sub>2</sub> in toluene is 1297 ppm.<sup>3</sup> The <sup>125</sup>Te chemical shifts of the two species bear a relationship that is expected from the comparison with the <sup>77</sup>Se chemical shifts of Se<sub>2</sub>Cl<sub>2</sub> and Se<sub>2</sub>Br<sub>2</sub>.¶ The appearance of only one resonance in the spectra of both compounds indicate an open-chain X–Te– Te–X structure rather than a branched X<sub>2</sub>Te=Te structure. One



minor signal was observed in both spectra (Fig. 1). The chemical shift of this resonance varies (820–880 ppm) and its intensity relative to that of the main resonance increases as a function of time and implies the decomposition of Te<sub>2</sub>Cl<sub>2</sub> and Te<sub>2</sub>Br<sub>2</sub>. We have previously made a tentative assignment of a weak resonance observed at 849 ppm in the S–Se–Te melt at 145 °C to Te<sub>8</sub>.<sup>6</sup> It is possible that the decomposition of Te<sub>2</sub>X<sub>2</sub> (X = Cl, Br) produces Te<sub>8</sub>.||

The mass spectra of  $Te_2Cl_2$  and  $Te_2Br_2$  are shown in Fig. 2.\*\* The observed isotopic distribution for the molecular ion of  $Te_2Cl_2$  as well as those for its fragments are in a good agreement with the calculated distributions. A reasonable fragmentation that exhibits the expected isotopic distributions could also be deduced in the mass spectrum of  $Te_2Br_2$ , though we did not observe the molecular ion.

It is well established that  $[Ti(C_5H_5)_2S_5]$  and  $[Ti(C_5H_5)_2Se_5]$  react with  $S_2Cl_2$  or  $Se_2Cl_2$  to produce cyclic seven-membered chalcogen compounds ( $S_7$ , 1,2-Se\_2S\_5 and 1,2,3,4,5-Se\_5S\_2, Se\_7, respectively).<sup>7</sup> These titanocene reagents can be used to further verify the identities of  $Te_2Cl_2$  and  $Te_2Br_2$ . We present here the preparation of 1,2-Te\_2S\_5 and 1,2-Te\_2Se\_5 [eqn. (2)] by treating  $Te_2Cl_2$  with  $[Ti(C_5H_5)_2E_5]$  (E = S, Se) in  $CS_2$  in an analogous manner as described previously for 1,2,3,4,5-Se\_5S\_2.<sup>8+†</sup>

$$[Ti(C_5H_5)_2E_5] + Te_2X_2 \rightarrow 1, 2-Te_2E_5 + [Ti(C_5H_5)_2X_2]$$
(2)

Only one <sup>125</sup>Te NMR resonance is observed in spectra of both compounds. The signal at 1732 ppm is assigned to 1,2-Te<sub>2</sub>S<sub>5</sub> and that at 1724 ppm to 1,2-Te<sub>2</sub>Se<sub>5</sub>. The latter resonance is

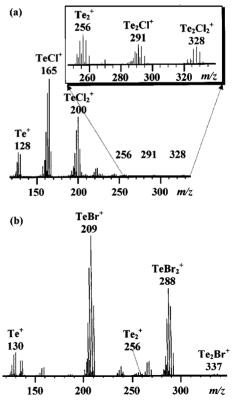



Fig. 2 12 eV mass spectra of (a) Te<sub>2</sub>Cl<sub>2</sub> and (b) Te<sub>2</sub>Br<sub>2</sub>.

expectedly upfield, since selenium is less electronegative than sulfur.<sup>11</sup> The <sup>77</sup>Se NMR resonances of 1,2-Te<sub>2</sub>Se<sub>5</sub> are 1040, 1019 and 982 ppm (intensity ratio 2:1:2). These signals are consistent with the <sup>77</sup>Se chemical shifts of 1,2,3,4,5-Se<sub>5</sub>S<sub>2</sub><sup>12</sup> and imply that 1,2-Te<sub>2</sub>Se<sub>5</sub> is also fluxional. It should be noted that Te<sub>2</sub>Br<sub>2</sub> is less reactive than Te<sub>2</sub>Cl<sub>2</sub>.

Financial support from Academy of Finland is gratefully acknowledged.

## Notes and references

<sup>†</sup> Preliminary information on Te<sub>2</sub>Cl<sub>2</sub> has been reported previously.<sup>3</sup>

‡ All reactions were carried out under a dry argon atmosphere. LiBHEt<sub>3</sub> (15.7 cm<sup>3</sup>, 15.7 mmol, 'Super-Hydride' 1 M in THF) and elemental tellurium (1.00 g, 7.84 mmol) were stirred for 15 min under slight warming. The solution was cooled to room temperature and the solution of TeCl<sub>4</sub> (2.11 g, 7.84 mmol) or TeBr<sub>4</sub> (3.51 g, 7.84 mmol) in 50 cm<sup>3</sup> of THF was added dropwise. The solution was filtered and solvent removed under a dynamic vacuum. The product was dissolved in CS<sub>2</sub> to remove LiX, elemental tellurium, and the unreacted TeX<sub>4</sub> (yields in both cases *ca.* 40% based on the initial amount of TeX<sub>4</sub>).

§ The <sup>77</sup>Se and <sup>125</sup>Te NMR spectra were recorded at 300 K on a Bruker DPX 400 spectrometer (76.311 and 126.241 MHz for <sup>77</sup>Se and <sup>125</sup>Te, respectively). D<sub>2</sub>O was used as an external <sup>2</sup>H lock and saturated D<sub>2</sub>O solutions of SeO<sub>2</sub> and H<sub>6</sub>TeO<sub>6</sub> as external references. The <sup>77</sup>Se and <sup>125</sup>Te chemical shifts were reported relative to neat Me<sub>2</sub>Se and Me<sub>2</sub>Te, respectively [ $\delta$ (Me<sub>2</sub>Se) =  $\delta$ (SeO<sub>2</sub>) + 1302.6;  $\delta$ (Me<sub>2</sub>Te) =  $\delta$ (H<sub>6</sub>TeO<sub>6</sub>) + 7121.

 $\P$  The  $^{77}Se$  chemical shift in  $Se_2Cl_2$  is 1271 ppm and that in  $Se_2Br_2$  1171 ppm.^{2b}

To test this assignment  $Te_2Cl_2$  was reacted with  $[Ti(MeC_5H_4)_2(\mu-Te_2)_2Ti(MeC_5H_4)]$  (molar ratio 2:1) in CS<sub>2</sub>. This reaction is expected to form Te<sub>8</sub>. We observed a single <sup>125</sup>Te resonance at 868 ppm.

\*\* EI-MS mass spectra of  $Te_2Cl_2$  and  $Te_2Br_2$  were recorded using a Kratos MS 80 spectrometer at 12 eV electron energy.

†† 0.26 g of  $[Ti(C_5H_5)_2S_5]^9$  or 0.44 g of  $[Ti(C_5H_5)_2Se_5]^{10}$  (0.77 mmol) was dissolved in 50 cm<sup>3</sup> of CS<sub>2</sub>. Te<sub>2</sub>Cl<sub>2</sub> (0.25 g; 0.77 mmol) in 10 cm<sup>3</sup> of CS<sub>2</sub> was added into this solution that was subsequently cooled down to -78 °C to precipitate 1,2-Te<sub>2</sub>E<sub>5</sub> and  $[Ti(C_5H_5)_2Cl_2]$ . After filtration and redissolving of  $[Ti(C_5H_5)_2Cl_2]$  in CHCl<sub>3</sub>, the remaining product was dried *in vacuo* 

[yields 0.11 g (34.2%) and 0.31 g (47.6%) for  $Te_2S_5$  and  $Te_2Se_5,$  respectively].

- 1 (a) F. Fehér, Handbuch der Präparative Anorganischen Chemie, ed. G. Brauer, 3rd edn., Ferdinand Enke Verlag, Stuttgart, 1975, vol. 1, p. 356; (b) P. Born, R. Kniep, D. Mootz, M. Hein and B. Krebs, Z. Naturforsch., Teil B, 1981, 36, 1516; (c) A. Engelbrecht and F. Sladky, Adv. Inorg. Chem. Radiochem., 1981, 24, 189; (d) R. Steudel, D. Jensen and B. Plinke, Z. Naturforsch., Teil B, 1987, 42, 163; (e) A. Haas and H. Willner, Z. Anorg. Allg. Chem., 1979, 454, 17; (f) M. Gopal and J. Milne, Inorg. Chem., 1992, 31, 4530; (g) K. Jug and R. Iffert, J. Mol. Struct. (Theochem), 1989, 186, 347; (h) H.-J. Mäusle and R. Steudel, Z. Anorg. Allg. Chem., 1980, 463, 27; (i) C. J. Marsden, R. D. Brown and P. D. Godfrey, J. Chem. Soc., Chem. Commun., 1979, 399; (j) R. L. Kuczkowski and F. B. Wilson, J. Am. Chem. Soc., 1963, 85, 2028; (k) B. Solouki and H. Bock, Inorg. Chem., 1977, 16, 665; (l) J. Milne and A. J. Williams, Inorg. Chem., 1992, 31, 4534; (m) M. Lamoureux and J. Milne, Can. J. Chem., 1989, 67, 1936; (n) M. Lamoureux and J. Milne, Polyhedron, 1990, 9, 589; (o) D. Katryniok and R. Kniep, Angew. Chem., 1980, 92, 646.
- 2 (a) J. Milne, J. Chem. Soc., Chem. Commun., 1991, 1048; (b) J. B. Milne, Can. J. Chem., 1992, **70**, 693; (c) R. Steudel, B. Plinke, D. Jensen and F. Baumgart, Polyhedron, 1991, **10**, 1037.
- 3 J. Pietikäinen and R. S. Laitinen, *Phosphorus Sulfur Silicon Relat. Elem.*, 1998, **124/125**, 453.
- 4 A. Rabenau and H. Rau, Z. Anorg. Allg. Chem., 1973, 395, 273.
- R. Kniep, D. Mootz and A. Rabenau, Z. Anorg. Allg. Chem., 1976, 422, 17; R. Kniep, D. Mootz and A. Rabenau, Angew. Chem., 1973, 85, 504; M. Takeda and N. N. Greenwood, J. Chem. Soc., Dalton Trans., 1976, 631.
- 6 T. Chivers, R. S. Laitinen, K. J. Schmidt and J. Taavitsainen, *Inorg. Chem.*, 1993, **32**, 337.
- 7 R. S. Laitinen, P. Pekonen and R. J. Suontamo, *Coord. Chem. Rev.*, 1994, **130**, 1 and references therein.
- 8 R. Steudel, M. Papavassiliou, E.-M. Strauss and R. Laitinen, Angew.
- *Chem., Int. Ed. Engl.*, 1986, **25**, 99. 9 A. Shaver and J. M. McCall, *Organometallics*, 1984, **3**, 1823.
- N. Shaver, J. M. McCall and G. Marmolejo, *Inorg. Synth.*, 1990, 27, 59
- 11 R. S. Laitinen and T. A. Pakkanen, Inorg. Chem., 1987, 26, 2598.
- 12 P. Pekonen, Y. Hiltunen, R. S. Laitinen and T. A. Pakkanen, *Inorg. Chem.*, 1990, 29, 2770.

Communication 8/03907K