Bis{(2-diphenylphosphino)phenyl}mercury: a novel bidentate ligand and transfer reagent for the *o*-C₆H₄PPh₂ group

Martin A. Bennett,* Maria Contel, David C. R. Hockless and Lee L. Welling

Research School of Chemistry, Australian National University, Canberra, A.C.T. 0200, Australia. E-mail: bennett@rsc.anu.edu.au

Received (in Cambridge, UK), 17th August 1998, Accepted 30th September 1998

The compound $[Hg(o-C_6H_4PPh_2)_2]$ behaves as a *trans*spanning bidentate ditertiary phosphine in its PdCl₂ complex, the two metal atoms being forced into close contact; the palladium(0) complex $[Pd\{(o-Ph_2PC_6H_4)_2Hg\}_2]$ undergoes reductive elimination on heating with formation of the coupled product $o-Ph_2PC_6H_4C_6H_4PPh_2-o$.

The formation of transition metal complexes containing the four-membered ring M(o-C₆H₄PPh₂) by ortho-metallation (C-H activation) of coordinated triphenylphosphine is well established.¹ In some cases dinuclear or polynuclear species $o-C_6H_4PPh_2^{2-5}$ containing bridging $o-C_6H_4\bar{P}(Ph)$ or CH₂CH₂PPh₂^{6,7} units can be generated from coordinated PPh₃ or Ph2PCH2CH2PPh2, respectively. Lahuerta et al. have reported that the carbon-halogen bonds of $o-Ph_2PC_6H_4X$ (X = Cl, Br) can undergo oxidative addition to $rhodium(1)^8$ and palladium(0)⁹ to give $o-C_6H_4PPh_2$ complexes of rhodium(III) and palladium(II), and we have shown that trans-metallation of o-Ph₂PC₆H₄Li provides access to o-C₆H₄PPh₂ complexes of platinum¹⁰ and gold.¹¹

Aryl groups are readily transferred from mercury(II) to both divalent and zerovalent palladium and platinum;^{12–14} reactions of this type have been used in the synthesis of cyclometallated N- and O-donor complexes.¹⁵ We wondered if the method could be extended to o-C₆H₄PPh₂ complexes and report here some preliminary results.

The required bis(aryl)mercury(II), $[Hg(o-C_6H_4PPh_2)_2]$ **1**, is obtained as a colourless solid in 75% yield from the reaction of $o-Ph_2PC_6H_4Li$ with $HgCl_2$ in a 2 : 1 molar ratio (Scheme 1).[†] Use of a 1 : 1 molar ratio gives mainly a poorly soluble, probably polymeric solid $[HgCl(o-C_6H_4PPh_2)]_n$ **2**, which disproportionates on heating with aqueous–ethanolic KCN to give **1**.

The small magnitude of ${}^{3}J(\text{HgP})$ observed in the ${}^{31}\text{P}$ and ${}^{199}\text{Hg}$ NMR spectra of compound 1^+_{+} indicates that the phosphorus atoms are probably not coordinated; they readily add oxygen, sulfur and BH₃ to give the corresponding dioxide **3**, disulfide **4**, and bis(borane) adduct **5** (Scheme 1), and react with mercuric halides to form dinuclear complexes [HgX₂{($o-Ph_2PC_6H_4)_2Hg$] (X = Cl **6a**, Br **6b**) (Scheme 2).†‡ Compound **6a** is more soluble in organic solvents than its isomer **2**.

Coordination via phosphorus also takes precedence over aryl group transfer in the reactions of compound **1** with transition

Scheme 1 Reagents: i, HgCl₂ (0.5 equiv); ii, H₂O₂; iii, S; iv, BH₃SMe₂.

metal complexes. Thus, from $[PtCl_2(cod)]$ or $[PtR_2(\mu-SEt_2)]_2$ (R = Me, Ph) colourless platinum(II) complexes of general formula $[PtR_2{(o-Ph_2PC_6H_4)_2Hg}]$ (R = Cl **7**, Me **8**, Ph **9**) are obtained, whose Pt-P coupling constants (3624, 1802 and 1592 Hz, respectively) indicate that 1 behaves as a *cis*-bidentate ligand. Complexes 8 and 9 also show well-resolved ¹⁹⁵Pt-¹⁹⁹Hg coupling in their ¹⁹⁹Hg NMR spectra.[‡] In contrast, a single-crystal X-ray diffraction study§ of the yellow complex $[PdCl_2{(o-Ph_2PC_6H_4)_2Hg}]$ 10 isolated as a CH_2Cl_2 solvate from compound 1 and $[PdCl_2(SEt_2)_2]$ shows the $PdCl_2$ unit to be coordinated in an only slightly distorted planar array by mutually *trans*-phosphorus atoms (Fig. 1). The coordination geometry about mercury is close to linear and the Pd-P, Pd-Cl and Hg-C distances are normal, but the atomic arrangement imposes a close contact between the metal centres, their separation [2.8797(8) Å] being only slightly greater than the sum of the covalent radii of Pd and Hg (2.77 Å). Similar distances have been reported in platinum(II) complexes that are believed to contain a $Pt^{II} \rightarrow Hg^{II}$ donor interaction,¹⁶ e.g. $[Pt{CH_2C_6H_4P(o-MeC_6H_4)_2}(S_2CNMe)HgI(\mu-I)]_2$ [2.768(1) Å].¹⁷ In its geometrical features ligand 1 resembles ferrocene-1,1'-divlbis(diphenylphosphine), $Fe(n^5-C_5H_4PPh_2)_2$ 11, which behaves as a trans-spanning ligand in the complex $[Pd(PPh_3){(\eta^5-C_5H_4PPh_2)_2Fe}](BF_4)_2$.¹⁸ In contrast to 1, however, 11 adopts a *cis*-bidentate mode in its PdCl₂ complex.¹⁹

The initially formed P-donor complexes of ligand 1 can behave as precursors either for coupling or transfer of o-C₆H₄PPh₂ groups. For example, reaction of [Pd(dba)₂] with 1 in a 1 : 2 molar ratio gives an orange, crystalline, trimetallic palladium(0)-mercury(II) complex [Pd{ $(o-Ph_2PC_6H_4)_2Hg_2$] 12, whose precise structure as a solid and in solution remains to

Scheme 2 Reagents (1 : 1 ratio in all cases): i, HgX_2 (X = Cl, Br); ii, $[PtX_2L_2]$ (X = Cl, L_2 = cod; X = Me, Ph, L = SEt₂); iii, $[PdCl_2(SEt_2)_2]$.

Fig. 1 ORTEP (50%) representation of 10. Important bond lengths (Å) and angles (°): Pd(1)–Hg(1) 2.8797(8), Pd(1)–Cl(1) 2.308(2), Pd(1)–Cl(2) 2.296(2), Pd(1)–P(1) 2.356(3), Pd(1)–P(2) 2.335(3), Hg(1)–C(1) 2.094(9), Hg(1)–C(7) 2.096(9), C(1)–Hg(1)–C(7) 177.5(4), P(1)–Pd–P(2) 168.45(9), Cl(1)–Pd(1)–Cl(2) 176.75(9).

be established. In refluxing toluene, complex **12** eliminates metallic palladium and mercury, and the coupled product 2,2'biphenyldiylbis(diphenylphosphine), *o*-Ph₂PC₆H₄C₆H₄PPh₂-*o* **13**,^{11,20} can be isolated in 60% yield. A similar C–C bond coupling by reductive elimination occurs in the isomerisation of the digold(II) complexes Au₂X₂(μ -*o*-C₆H₄PPh₂)₂ (X = Cl, Br, I) and Au₂X₂(*o*-Ph₂PC₆H₄C₆H₄PPh₂-*o*),¹¹ although in this case the ligand remains in the coordination sphere. Reaction of **1** with *trans*-[PtHCl(PPrⁱ₃)₂] in hot toluene gives the monomeric cycloplatinated complex [PtCl(*o*-C₆H₄PPh₂)(PPrⁱ₃)] **14**, again with elimination of mercury; the presumed P-donor precursor cannot be detected or isolated.

The coordination chemistry of $[Hg(o-C_6H_4PPh_2)_2]$ and transfer reactions of $o-C_6H_4PPh_2$ to other transition metals are being investigated. We thank the Universidad Pública de Navarra (Spain) for a postdoctoral grant to M. C.

Notes and references

[†] Data describing full experimental details and analytical data for **12** are available as electronic supplementary information (http://www.rsc.org/suppdata/cc/1998/2401).

[‡] Selected NMR data for compounds 1–3, 6a, 7–10, 12–14 at 23 °C in CD₂Cl₂, except where stated; ³¹P{¹H} NMR spectra at 80.96 MHz, ¹⁹⁹Hg{¹H} NMR spectra at 89.40 MHz referred to neat [Hg(CH₃)₂] (CAUTION: extremely toxic and volatile); coupling constants in Hz; reported peak multiplicities omit satellites except for the ¹⁹⁹Hg resonances of 8 and 9: 1: δ_P 0.38 [s,³J(HgP) 212], δ_{Hg} [470 t, ³J(HgP) 214]. 2: δ_P (DMSO) 29.7 [s, ¹J(HgP) 4798]. 3: δ_P 31.7 [s, ³J(HgP) 148], δ_{Hg} -750 [t, ³J(HgP) 147]. 6a: δ_P (DMSO) 30.5 [br s, ¹J(HgP) 4835, ³J(HgP) 554]. 7: δ_P (DMSO) 15.5 [s, ¹J(PtP) 3624, ³J(HgP) 320]. 8: δ_P 24.6 [s, ¹J(PtP) 1802, ³J(HgP) 241], δ_{Hg} -418 [7-line m, ³J(HgP) 244, ⁴J(HgP) 220]. 9: δ_P 18.1 [s, ¹J(PtP) 1592, ³J(HgP) 264], δ_{Hg} -400 [7-line m, ³J(HgP) 268, ⁴J(HgPt)

280]. **10**: δ_P 19.1 [s, ${}^{3}J(HgP)$ 260], δ_{Hg} -619 [t, ${}^{3}J(HgP)$ 259]. **12**: δ_P (C₆D₆) 14.2 (br s). **13**: δ_P -13.0 (s). **14**: δ_P (C₆D₆) 38.0, -64.8 [ABq, ${}^{2}J(PP)$ 425, ${}^{1}J(PtP)$ 2943, 2064].

§ *Crystal data and data collection parameters for* **10**: $C_{36}H_{28}Cl_2HgP_2Pd \cdot CH_2Cl_2, M = 985.39$, yellow needle, crystal size $0.32 \times 0.12 \times 0.06$ mm, monoclinic, space group $P2_1/c$ (no. 14), a = 11.684(1), b = 25.135(2), c = 12.036(2) Å, $\beta = 93.66(1)^\circ, U = 3527.5(8)$ Å³, Z = 4, $D_c = 1.855$ g cm⁻³, μ (Cu-K α) = 151.77 cm⁻¹, F(000) = 1940, analytical absorption correction; 5399 unique data ($2\theta_{max} = 120.1^\circ$), 4278 with $I > 3\sigma(I), R = 0.045, wR = 0.051$, GOF = 2.42. CCDC 182/1043.

- I. Omae, Coord. Chem. Rev., 1980, 32, 235; Organometallic Intramolecular-Coordination Compounds, J. Organomet. Chem. Library No 18, Elsevier, 1986, p. 154.
- 2 C. W. Bradford, R. S. Nyholm, G. J. Gainsford, J. M. Guss, P. R. Ireland and R. Mason, J. Chem. Soc., Chem. Commun., 1972, 87; G. J. Gainsford, J. M. Guss, P. R. Ireland, R. Mason, C. W. Bradford and R. S. Nyholm, J. Organomet. Chem., 1972, 40, C70.
- 3 M. I. Bruce, G. Shaw and F. G. A. Stone, J. Chem. Soc., Dalton Trans., 1972, 2094.
- 4 A. K. Chakravarty, F. A. Cotton and D. A. Tocher, *Inorg. Chem.*, 1984, 23, 4697; A. K. Chakravarty, F. A. Cotton, D. A. Tocher and J. H. Tocher, *Organometallics*, 1985, 4, 8; F. A. Cotton and K. R. Dunbar, *J. Am. Chem. Soc.*, 1987, 109, 2199; P. Lahuerta, J. Payá, X. Solans and M. A. Ubeda, *Inorg. Chem.*, 1992, 31, 385; P. Lahuerta, J. Payá, M. A. Pellinghelli and A. Tiripicchio, *Inorg. Chem.*, 1992, 31, 1224.
- 5 M. A. Bennett, D. E. Berry, T. Dirnberger, D. C. R. Hockless and E. Wenger, J. Chem. Soc., Dalton Trans., 1998, 2367.
- 6 D. P. Arnold, M. A. Bennett, G. M. McLaughlin and G. B. Robertson, J. Chem. Soc., Chem. Commun., 1982, 115.
- 7 G. Bruno, G. DeMunno, G. Tresoldi, S. Lo Schiavo and P. Piraino, *Inorg. Chem.*, 1992, **31**, 1538.
- 8 P. Lahuerta, J. Latorre, R. Martinez-Mánez and F. Sanz, J. Organomet. Chem., 1988, 356, 355.
- 9 A. M. Arif, F. Estevan, A. García-Bernabé, P. Lahuerta, M. Sanaú and M. A. Ubeda, *Inorg. Chem.*, 1997, 36, 6472.
- 10 M. A. Bennett, D. E. Berry, S. K. Bhargava, E. J. Ditzel, G. B. Robertson and A. C. Willis, J. Chem. Soc., Chem. Commun., 1987, 1613.
- 11 M. A. Bennett, S. K. Bhargava, D. C. R. Hockless, L. L. Welling and A. C. Willis, J. Am. Chem. Soc., 1996, 118, 10469.
- 12 R. J. Cross and R. Wardle, J. Chem. Soc. A, 1970, 840; G. K. Anderson, Organometallics, 1983, 2, 665.
- 13 J. Vicente, J. A. Abad, F. Teruel and J. García, J. Organomet. Chem., 1988, 345, 233, and refs. cited therein.
- 14 V. I. Sokolov and O. A. Reutov, Coord. Chem. Rev., 1978, 27, 89.
- 15 R. J. Cross and N. H. Tennent, J. Organomet. Chem., 1974, 72, 21; A. F. M. J. van der Ploeg, G. van Koten and K. Vrieze, J. Organomet. Chem., 1981, 222, 155; E. Wehman, G. van Koten, J. H. Jastrzelski, H. Ossor and M. Pfeffer, J. Chem. Soc., Dalton Trans., 1988, 2975; E. C. Constable, A. M. W. Cargill Thompson, T. A. Leese, D. G. F. Reese and D. A. Tocher, Inorg. Chim. Acta, 1991, 182, 93.
- 16 A. F. M. J. van der Ploeg, G. van Koten, K. Vrieze, A. L. Spek and A. J. M. Duisenberg, *Organometallics*, 1982, **1**, 1066; M. Krumm, E. Zangrando, L. Randaccio, S. Menzer, A Danzmann, D. Holtenreich and B. Lippert, *Inorg. Chem.*, 1993, **32**, 2183.
- 17 L. R. Falvello, J. Forniés, A. Martin, R. Navarro, V. Sicilia and P. Villarroya, *Inorg. Chem.*, 1997, 36, 6166.
- 18 M. Sato, H. Shigeta, M. Sekino and S. Akabori, J. Organomet. Chem., 1993, 458, 199.
- 19 T. Hayashi, M. Konishi, Y. Kobori, M. Kumada, T. Higuchi and K. Hirotsu, J. Am. Chem. Soc., 1984, 106, 158.
- 20 O. Desponds and M. Schlosser, J. Organomet. Chem., 1996, 507, 257.

Communication 8/06494F