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Highly diastereoselective reactions using masked allylic zinc reagents
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Substituted allylic organozinc reagents have been prepared
using a novel fragmentation reaction; the resulting allylic
zinc species are configurationally stable and give excellent
regio- and diastereo-selectivities.

We have recently documented an entirely new approach for the
generation of allylic zinc reagents based on a retro-allylation, an
allylation sequence starting from the sterically hindered tertiary
alcohol 1 (Scheme 1).1,2 Generation of the zinc alkoxide of this
homoallylic alcohol results in fragmentation and formation of
an allyl zinc reagent 2 in situ; this is itself able to react with a
range of other electrophiles. This method avoids the problems
associated with Wurtz coupling.

Substituted allyl zinc reagents had previously been prepared
by Tamura from allyl benzoates but with mixed results;3 we
hoped that our mild method would give improved selectiv-
ities.

Accordingly, the tertiary alcohol 3 bearing an a-methylallyl
group was prepared (Scheme 2).4 However, we were disap-
pointed to find that upon deprotonation of this material at room
temperature with BuLi a rapid isomerisation to the g-substituted
isomer 4 occurred.5 Undeterred, the deprotonation was at-
tempted at 278 °C, and we were pleased to find no
isomerisation. Addition of benzaldehyde followed by a solution
of zinc chloride gave within 1 h at 278 °C the benzylic alcohol
5 in 83% isolated yield.† More interestingly, the product was
isolated as a 94:6 mixture of anti:syn diastereomers.6 This
reaction is in stark contrast to the addition of crotylzinc bromide
to benzaldehyde, which gives approximately 1:1 mixtures of
diastereomers.7

Inspired by this reaction, a range of aldehydes were screened
(Fig. 1). Reaction of the homoallylic alcohol with cyclohex-
anecarbaldehyde gave the alcohol 6 in 84% yield, again with the
anti diastereomer in excess (96:4). Similarly, reaction with
2-butylacrolein gave solely the product of 1,2-addition, giving
the homoallylic alcohol 7 in 76% isolated yield as a 97:3
mixture of diastereomers. The reaction with 2-ethylbutyr-
aldehyde and 1-naphthaldehyde gave the expected products 8
and 9 in 86 and 92% yields, respectively; in both cases only the

anti-diastereomer was observed by 1H and 13C NMR spectros-
copy. In all cases, none of the g-substituted product was
detected.

Similar results were obtained when we placed other sub-
stituents in the a-position. 3-(tert-Butyl)-2,2-dimethyl-4-ethyl-
hex-5-en-3-ol 10 was prepared using identical chemistry as used
in the preparation of homoallylic alcohol 3.4 This too was found
to exhibit high levels of anti-selectivity. Reaction with BuLi,
benzaldehyde and zinc chloride (Scheme 3) gave 2-ethyl-
1-phenylbut-3-en-1-ol 11 in 91% as a 91:9 mixture of anti:syn
isomers. Likewise, reaction with cyclohexanecarbaldehyde and
2-ethylbutyraldehyde gave rise to the homoallylic alcohols 12
and 13 in 83 and 81% yields, respectively, both solely as the
anti-diastereomers.

Further synthetic investigation revealed that a benzyl group
could easily be incorporated into the a-position of the
homoallylic alcohol (Scheme 4). The precursor was readily
prepared form 2, 2-dimethylhex-5-en-3-one 14 by deprotona-
tion with LDA at 278 °C, followed by a-alkylation with BnBr
in THF–HMPA in 65% yield. Subsequent reaction with ButLi
gave the required precursor 15 in 85% yield. As in all previous
cases, deprotonation and reaction with benzaldehyde in the
presence of zinc chloride gave the desired benzylic alcohol 16
in 89%, again with excellent diastereoselectivity (95:5).
Aliphatic aldehydes also reacted well giving the homoallylic
alcohols 17 and 18 in 88 and 80% yields, respectively.

Surprised by these results we were interested to investigate
the outcome of placing substituents in the g-position of the
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allylic system. A new synthetic route needed to be adopted and
oxirane 19 was prepared and opened with a variety of lithium
acetylides to give the homopropargyl compounds 20a,b in
reasonable yields (84 and 65%) (Scheme 5). Hydrogenation
with palladium on barium sulfate gave the Z-isomer 21
quantitatively, whilst treatment with LiAlH4 gave the required
E-isomer 22. With these two compounds to hand the migration
was investigated. The resulting zinc alkoxides were found to be
less reactive. Whereas the a-substituted compounds migrated at
278 °C, these compounds required warming to room tem-
perature before migration could be observed. With 21 migration
occurred in 52% yield after 48 h (86% based on recovered
starting material) to give the desired homoallylic alcohol 23,
while the E-isomer 22 gave the corresponding alcohol 24 in
23% yield after 12 h (87% based on recovered starting material).
In both cases the products were isolated as 2:1 mixture of Z:E
isomers. The g-disubstituted compound 25 was also prepared;
however, this compound proved to be stable and no migration
was detected.

These results suggest a plausible mechanism involving a
double allylic transposition. Generation of the zinc alkoxide of
the alcohol 26 results in a cyclic six-membered intermediate
where the zinc is complexed to the reacting carbonyl compound
(Scheme 6). Allylic transposition gives rise to a crotylzinc
reagent 27 complexed to the parent bis(tert-butyl) ketone and
the reaction partner, the zinc reagent bearing solely a trans-
configuration. At 278 °C this species is stable and undergoes
no isomerisation.8 Owing to the complexation of the reacting
partner with the zinc, a new six-centred intermediate 28 is
possible, whereby all the substituents lie in equatorial positions;
allylic transposition then gives rise to the product 29, predom-
inately as the anti-diastereomer. This mechanism is supported
by the unreactive nature of the g-substituted isomer, whereby
steric congestion prevents the first allylic transposition from
occurring.

In summary, we have developed a novel method for the
preparation of substituted allylic zinc reagents. This method is
extremely selective, giving both excellent regiochemical se-
lectivity and excellent diastereoselectivity. The method is
extremely mild and avoids Wurtz coupling products.9
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for generous financial support, and the Royal Society for an
award (to P. J.) under the European Science Exchange
Programme.

Notes and references
† Typical procedure: anti-2-methyl-1-phenylbut-3-en-1-ol 5: A solution of
BuLi (2.52 mmol) in pentane (1.6 M, 1.58 ml) was added dropwise over 5
min to a stirred solution of 3-tert-butyl-2,2,4-trimethylhex-5-en-3-ol (ref. 4)
3 (500 mg, 2.52 mmol) in THF (4 ml) at 278 °C under argon. The resulting
solution was then stirred for 15 min and benzaldehyde (256 ml, 2.52 mmol)
was added and stirred for a further 15 min; finally a solution of zinc chloride
(343 mg, 2.52 mmol) in THF (2 ml) was added over 3 min. The reaction was
stirred at 278 °C for 1 h then allowed to warm to room temperature. The
reaction was worked up as usual to give a crude residue, which was then
purified by column chromatography on silica using 10% Et2O–light
petroleum as eluent to give the desired alcohol (ref. 10) 5 (341 mg, 83%) as
a pale yellow oil.
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