Cyclopentadienyl titanium chlorides containing ortho-(1-naphthyl)phenoxide ligation

Jonathan S. Vilardo, Matthew G. Thorn, Phillip E. Fanwick and Ian P. Rothwell*
Department of Chemistry, 1393 Brown Building, Purdue University, West Lafayette, IN 47907-1393, USA.
E-mail.rothwell@chem.purdue.edu

Received (in Bloomington, IN, USA) 30th June 1998, Accepted 2nd September 1998

A series of mono-cyclopentadiene derivatives of titanium containing ortho-(1-naphthyl)phenoxide ligands have been studied; the Ti-Ti distance in the $\mathrm{d}^{1}-\mathrm{d}^{1}$ species $[\mathrm{Cp}(\mathrm{Ar}-$ $\left.\mathrm{O}) \mathrm{Ti}(\mu-\mathrm{Cl})_{2} \mathrm{Ti}(\mathrm{OAr}) \mathrm{Cp}\right]$ is exactly intermediate between that found in paramagnetic $\left[\mathrm{Cp}_{2} \mathrm{Ti}(\mu-\mathrm{Cl})_{2} \mathrm{TiCp}_{2}\right]$ and diamagnetic $\left[(\mathrm{ArO})_{2} \mathrm{Ti}(\mu-\mathrm{Cl})_{2} \mathrm{Ti}(\mathrm{OAr})_{2}\right]$.

Ortho-phenyl phenoxide ligands, e.g. 1 (Scheme 1) and 2, are an important subset of aryloxide ligation that have been used to support inorganic/organometallic chemistry at p-block, ${ }^{1}$ dblock 2 and f-element ${ }^{3}$ metal centers. Following our successful development of cyclometalation resistant, e.g. 3 and $\mathbf{4}$, and immune, 5 (Scheme 1) aryloxide ligation ${ }^{4}$ we have begun to study the chemistry of potentially chiral o-(1-naphthyl)phen-

1

6
oxide ligands. Straightforward synthetic strategies lead to the non-symmetric 6 and symmetric 7 and $\mathbf{8}$ (Scheme 1, Np = 1naphthyl). \dagger Both $\mathbf{7}$ and $\mathbf{8}$ are produced as a 50/50 mixture of non-chiral meso and DL forms. In the case of $\mathbf{7}$ inter-conversion of the two forms occurs on the NMR timescale with the barrier for naphthyl rotation estimated as $18.0(5) \mathrm{kcal} \mathrm{mol}{ }^{-1}$ at $67^{\circ} \mathrm{C}$. Presumably a similar barrier will be present for other o -(1-naphthyl)phenols lacking meta substituents. In the case of meta-phenyl blocked 8 it is possible to isolate the pure, crystalline meso form from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-heptane and show that inter-conversion in this case requires days at $100{ }^{\circ} \mathrm{C} .5^{5}$ In contrast an adaptation of the chemistry of the late Sir Derek Barton ${ }^{6}$ leads to 9 (Scheme 1) which is produced as a single isomer whose subsequent chemistry (below) shows it to be the chiral form.

Reaction of phenols 1, 4-6 and $\mathbf{9}$ in the presence of pyridine (py) or the lithium salt of $\mathbf{5}$ with $\left[\mathrm{CpTiCl}_{3}\right]$ yields the compounds $\mathbf{1 0} \mathbf{- 1 2}$ as orange solids in high yield (Scheme 2). The solid state structure of 12b (Fig. 1) \ddagger confirms the chiral nature of the single isomer of phenol 9 generated by the particular method of synthesis. The solution NMR spectroscopic properties of $\mathbf{1 0 - 1 2}$ are as expected with single $\mathrm{C}_{5} \mathrm{H}_{5}$ resonances and a single set of aryloxide signals in each cause. \dagger In the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 2 b}$ the $\mathrm{C}_{5} \mathrm{H}_{5}$ protons resonate at significantly higher field, $\delta 5.32$ compared to the $\delta 5.6-5.8$ region found for the other derivatives. This indicates much greater diamagnetic shielding of adjacent ligand protons and is caused by the presence of the two ortho-(1-naphthyl) rings, which are locked in place by the meta-tert-butyl groups.
Treatment of $\mathbf{1 0 b}$ with sodium amalgam (1 Na per Ti) leads to a red solution of the dimeric species $\mathbf{1 3}$ (Scheme 2). The solid state structure of $\mathbf{1 3}$ (Fig. 2) \ddagger shows a dinuclear compound with a $\mathrm{Ti}(\mu-\mathrm{Cl})_{2} \mathrm{Ti}$ core and terminal aryloxide and Cp groups. The

10a: $\mathrm{Ar}=\mathrm{Pb}$ 10b: $\mathrm{Ar}=\mathrm{Np}$

11: $\mathbf{R}=\mathrm{Me}, \mathrm{Ar}=\mathrm{Ph}$ 12a: $\mathbf{R}=\mathrm{Bu}^{\mathrm{t}}, \mathrm{Ar}=\mathrm{Ph}$ 12b: $\mathrm{R}=\mathrm{Bu}^{\mathrm{t}}, \mathrm{Ar}=\mathrm{Np}$

10b

Scheme 2
 or

 OH 7: $\mathrm{R}=\mathrm{H}$ 8: $\mathrm{R}=\mathrm{Ph}$

9

Scheme 1

Table 1 Structural parameters for $\left[(\mathrm{X})(\mathrm{Y}) \mathrm{TiCl}_{2}\right]$ and $\left[(\mathrm{X})(\mathrm{Y}) \mathrm{Ti}(\mu-\mathrm{Cl})_{2} \mathrm{Ti}(\mathrm{X})(\mathrm{Y})\right] ; \mathrm{X}, \mathrm{Y}=\mathrm{Cp}$ or $\mathrm{ArO}(\mathrm{Np}=1$-naphthyl)

Compound	$\mathrm{X}-\mathrm{Ti}-\mathrm{Y} /{ }^{\circ}$	$\mathrm{Cl}-\mathrm{Ti}-\mathrm{Cl} /{ }^{\circ}$	Ti-Cl/Å	Ti-Ti/A	Ref.
$\mathrm{Cp}_{2} \mathrm{TiCl}_{2}$	131	94	2.36 (av.)	-	7
$\mathrm{CpTi}\left(\mathrm{OC}_{6} \mathrm{HNp}_{2}-2,6-\mathrm{Bu}^{\mathrm{t}}{ }_{2}-3,5\right)_{2} \mathrm{Cl}_{2} \mathbf{1 2 b}$	118	102	2.23 (av.)	-	This work
$\mathrm{Ti}\left(\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{Ph}_{2}-2,6\right)_{2} \mathrm{Cl}_{2}$	109	113	$2.206(1)$	-	8
$\left[\mathrm{Cp}_{2} \mathrm{Ti}(\mu-\mathrm{Cl})\right]_{2}$	133	79	2.55 (av.)	3.95 (av.)	9
$\left[\mathrm{CpTi}\left(\mathrm{OC}_{6} \mathrm{H}_{2} \mathrm{~Np}-2-\mathrm{Bu}_{2}-4,6\right)(\mu-\mathrm{Cl})\right]_{2} \mathbf{1 3}$	125	115	2.40 (av.)	3.336(1)	This work
$\left[\mathrm{Ti}\left(\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{Ph}_{2}-2,6\right)_{2}(\mu-\mathrm{Cl})\right]_{2}$	144	102	2.37 (av.)	2.9827 (7)	10

Fig. 1 Molecular structure of $\mathbf{1 2 b}$ showing the atomic numbering scheme. Selected interatomic distances (\AA) and angles $\left({ }^{\circ}\right)$: Ti-O(10) 1.774(3), Ti$\mathrm{Cl}(1) 2.230(2)$, $\mathrm{Ti}-\mathrm{Cl}(2) 2.244(2) ; \mathrm{Cl}-\mathrm{Ti}-\mathrm{Cl} 102.36(7), \mathrm{Cp}-\mathrm{Ti}-\mathrm{O}(10)$ 118.6(2), $\mathrm{Ti}-\mathrm{O}(10)-\mathrm{C}(11)$ 164.1(3).

Fig. 2 Molecular structure of $\mathbf{1 3}$ showing the atomic numbering scheme. Selected interatomic distances (\AA) and angles $\left({ }^{\circ}\right)$: $\mathrm{Ti}-\mathrm{Ti} 3.336(1), \mathrm{Ti}-\mathrm{O}(10)$ $1.817(2), \mathrm{Ti}-\mathrm{Cl}(1) 2.400(1), 2.406(1) ; \mathrm{Cl}(1)-\mathrm{Ti}-\mathrm{Cl}(1) 92.07(4), \mathrm{Cp}-\mathrm{Ti}-$ $\mathrm{O}(10)$ 125.1(3), $\mathrm{Ti}-\mathrm{O}(10)-\mathrm{C}(11) 166.7(2)$.

Cp ligands are arranged in a transoid fashion, with a crystallographic inversion center being present. The molecular structure of $\mathbf{1 3}$ is such that each dimeric unit contains two naphthylphenoxides of opposite chirality.

Table 1 collects some structural parameters for selected derivatives of $\mathrm{Ti}(\mathrm{Iv} / \mathrm{III})$, focusing on the effects of replacing Cp ligands by OAr groups. Some trends can be discerned. The TiCl distance decreases significantly in both series of compounds as Cp is replaced by OAr , reflecting an increase in electrophilicity of the metal center. In the tetrahedral $\mathrm{Ti}(\mathrm{IV})$ series the $\mathrm{Cl}-\mathrm{Ti}-\mathrm{Cl}$ angle opens up as the corresponding $\mathrm{X}-\mathrm{Ti}-\mathrm{Y}$ angle closes down upon replacement of Cp by OAr. ${ }^{7,8}$ The most interesting parameter is the $\mathrm{Ti}-\mathrm{Ti}$ distances in the $\mathrm{d}^{1}-\mathrm{d}^{1}$ dimers. ${ }^{9,10}$ The 3.95 (av.) distance in the $\mathrm{Cp}_{2} \mathrm{Ti}$ compounds is consistent with the complete lack of any metal-metal bonding. In contrast the short distance in the diamagnetic bis(aryloxide) is consistent with the presence of a Ti-Ti single bond. ${ }^{10}$ In the case of the 'hybrid' paramagnetic species $\mathbf{1 3}$, the Ti-Ti distance is exactly intermediate between the previous two molecules. In this case there is clearly no metal-metal bond present and the observed $\mathrm{Ti}-\mathrm{Ti}$ distance possibly is purely a consequence of the $\mathrm{Ti}-\mathrm{Cl}$ distances within the $\mathrm{Ti}(\mu-\mathrm{Cl})_{2} \mathrm{Ti}$ unit.

We thank the National Science Foundation (Grant CHE9321906) for financial support of this research.

Notes and references

\dagger Selected spectroscopic data: aromatic signals unless indicated: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right.$, unless otherwise stated, $30{ }^{\circ} \mathrm{C}$): 6: $\left(\mathrm{CDCl}_{3}\right) \delta 7.00-7.90 ; 4.82$ (s, $\mathrm{OH}) ; 1.44(\mathrm{~s}), 1.32\left[\mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right] .7:\left(\mathrm{CDCl}_{3}\right) \delta 6.80-8.20 ; 4.78(\mathrm{~s}), 4.74(\mathrm{~s}$, $\mathrm{OH})$. 8: $\left(\mathrm{CDCl}_{3}\right) \delta 7.00-8.10 ; 4.95(\mathrm{~s}), 4.93(\mathrm{~s}, \mathrm{OH}) .9: \delta 7.9-7.23(\mathrm{~m}) ; 4.15$ (s, OH) ; 1.18 [s, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$. 10a: $\delta 7.22-8.20 ; 5.60\left(\mathrm{~s}, \mathrm{C}_{5} H_{5}\right) ; 1.67$ (s), 1.25 [s, C(CH3 $)_{3}$]. 10b: $\delta 7.20-7.60 ; 5.70\left(\mathrm{~s}, \mathrm{C}_{5} H_{5}\right) ; 1.63(\mathrm{~s}), 1.27\left[\mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$. 11: $\delta 7.19-7.36 ; 6.79\left(\mathrm{~s}\right.$, para-H); $5.78\left(\mathrm{~s}, \mathrm{C}_{5} H_{5}\right) ; 2.03\left(\mathrm{~s}\right.$, meta $\left.-\mathrm{CH}_{3}\right)$. 12a: $\delta 7.72$ (s, para-H); 7.30-7.16 (m); $5.91\left(\mathrm{~s}, \mathrm{C}_{5} \mathrm{H}_{5}\right) ; 1.23\left[\mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$. 12b: $\delta 7.87(\mathrm{~s}$, para -H$) ; 7.71-7.13(\mathrm{~m}) ; 5.32\left(\mathrm{~s}, \mathrm{C}_{5} \mathrm{H}_{5}\right) ; 1.10\left[\mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right] .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right.$, unless otherwise stated, $\left.30{ }^{\circ} \mathrm{C}\right):$ 6: $\left(\mathrm{CDCl}_{3}\right) \delta 149.3(\mathrm{O}-C)$; 123.8-141.8; 35.1, $34.4\left[\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right] ; 31.7,29.7\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right] .7:\left(\mathrm{CDCl}_{3}\right) \delta}\right.$ 150.7, 150.6 (CO); 135.1, 135.0, 133.8, 131.95, 131.88, 127.0, 126.93; $131.3,129.3,128.4,128.3,128.0,127.8,126.3,126.2,126.0,125.9,125.6$, 120.3, 120.2. 8: $\left(\mathrm{CDCl}_{3}\right) \delta 151.43,151.38(\mathrm{CO}) ; 124.0-141.0 .9: \delta 151.7$ (O-C); 148.5, 136.2, 133.5, 129.5, 128.1, 128.0, 126.6, 126.1, 125.9, 125.3,
 C); $120.6\left(C_{5} \mathrm{H}_{5}\right) ; 36.0,34.7\left[C\left(\mathrm{CH}_{3}\right)_{3}\right] ; 31.5,30.7\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$. 10b: $\delta 164.6$ (Ti-O-C); $121.1\left(\mathrm{C}_{5} \mathrm{H}_{5}\right) ; 35.9,34.7\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right] ; 31.5,30.6\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right] .11: \delta$ 164.3 (Ti-O-C); $120.2\left(C_{5} \mathrm{H}_{5}\right) ; 20.7\left(\right.$ meta- $\left.\mathrm{CH}_{3}\right)$. 12a: $\delta 165.8(\mathrm{O}-C) ;$ $147.9,138.5,132.9,131.1,128.5,127.8,121.4 ; 119.8\left(C_{5} \mathrm{H}_{5}\right) ; 37.5$
 $130.4,128.8,128.7,128.3,127.3,126.3,126.1,125.3,122.4 ; 119.6\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)$; $37.9\left[C\left(\mathrm{CH}_{3}\right)_{3}\right] ; 32.8\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$.
\ddagger Crystal data: for $\mathbf{1 2 b}$ at $296 \mathrm{~K}: \mathrm{TiCl}_{2} \mathrm{OC}_{39} \mathrm{H}_{38}, M=641.54$, space group $P 1$ (no. 2), $a=10.960(1), b=11.644(3), c=15.603(1) \AA, \alpha=71.003(7)$, $\beta=104.23(3), \gamma=63.402(5)^{\circ}, V=1673.5(3) \AA^{3}, D_{\mathrm{c}}=1.273 \mathrm{~g} \mathrm{~cm}^{-3}$, $Z=2$. Of the 6851 unique reflections collected $\left(7.69 \leqslant 2 \theta \leqslant 62.74^{\circ}\right)$ with $\operatorname{Mo}-\mathrm{K} \alpha(\lambda=0.71073 \AA)$, the 6851 with $F_{\mathrm{o}}{ }^{2}>2 \sigma\left(F_{\mathrm{o}}{ }^{2}\right)$ were used in the final least-squares refinement to yield $R\left(F_{\mathrm{o}}\right)=0.076$ and $R_{\mathrm{w}}\left(F_{\mathrm{o}}{ }^{2}\right)=0.190$. For 13 at $296 \mathrm{~K}^{2} \mathrm{Ti}_{2} \mathrm{Cl}_{2} \mathrm{O}_{2} \mathrm{C}_{58} \mathrm{H}_{64}, M=959.86$, space group $P 2_{1} / n$ (no. 14), $a=12.5923(5), b=12.7390(6), c=17.4609(8) \AA, \beta=109.814(2)^{\circ}$, $V=2635.1(4) \AA^{3}, D_{\mathrm{c}}=1.210 \mathrm{~g} \mathrm{~cm}^{-3}, Z=2$. Of the 6836 unique reflections collected $\left(5.90 \leqslant 2 \theta \leqslant 61.46^{\circ}\right)$ with $\mathrm{Mo}-\mathrm{K} \alpha(\lambda=0.71073 \AA)$, the 6836 with $F_{\mathrm{o}}^{2}>2 \sigma\left(F_{\mathrm{o}}^{2}\right)$ were used in the final least-squares refinement to yield $R\left(F_{\mathrm{o}}\right)=0.074$ and $R_{\mathrm{w}}\left(F_{\mathrm{o}}{ }^{2}\right)=0.169$.

1 S. Saito and H. Yamamoto, Chem. Commun., 1997, 1585.
2 I. P. Rothwell, Chem. Commun., 1997, 1331; Acc. Chem. Res., 1988, 21, 153.

3 D. L. Clark, G. B. Deacon, T. Feng, R. V. Hollis, B. L. Scott, B. W. Skelton, J. G. Watkin and A. H. White, Chem. Commun., 1996, 1729 and references therein.
4 J. S. Vilardo, M. A. Lockwood, L. G. Hanson, J. R. Clark, B. C. Parkin, P. E. Fanwick and I. P. Rothwell, J. Chem. Soc., Dalton Trans., 1997, 3353.

5 For related ortho-(2-alkylphenyl)phenols see S. Saito, T. Kano, K. Hatanaka and H. Yamamoto, J. Org. Chem., 1997, 62, 5651.

6 D. H. R. Barton, D. M. X. Donnelly, P. J. Guiry and J. H. Reibenspies, J. Chem. Soc., Chem. Commun., 1990, 1110; D. H. R. Barton, N. Y. Bhatnagar, J.-C. Blazejewski, B. Charpiot, J.-P. Finet, D. J. Lester, W. B. Motherwell, M. T. B. Papoula and S. P. Stanforth, J. Chem. Soc., Perkin Trans. 1, 1985, 2657.
7 A. Clearfield, D. K. Warner, C. H. Saldarriaga-Molina and R. Ropal, Can. J. Chem., 1975, 53, 1622.
8 J. R. Dilworth, J. Hanich, M. Krestel, J. Beck and J. Strahle, J. Organomet. Chem., 1986, 315, C9.

9 R. Jungst, D. Sekutowski, J. Davis, M. Luly and G. Stucky, Inorg. Chem., 1977, 7, 1645.
10 J. E. Hill, P. E. Fenwick and I. P. Rothwell, Polyhedron, 1990, 9, 1617.

Communication 8/05034A

