## Antimony as a symmetrically bridged ligand in a novel neutral complex

## Manfred Scheer,\*a Jan Müller,a G. Bauma and Marco Häserb

<sup>a</sup> Institute of Inorganic Chemistry, University of Karlsruhe, D-76128 Karlsruhe, Germany. E-mail: mascheer@achibm6.chemie.uni-karlsruhe.de

<sup>b</sup> Institute of Physical Chemistry, University of Karlsruhe, D-76128 Karlsruhe, Germany

Received (in Basel, Switzerland) 20th August 1998, Accepted 13th October 1998

[LW=Sb=WL] 7 (L = N(CH<sub>2</sub>CH<sub>2</sub>N(Np))<sub>3</sub>; Np = CH<sub>2</sub>CMe<sub>3</sub>) is prepared by treatment of [LWCl] 5 with LiSb(SiMe<sub>3</sub>)<sub>2</sub>-(dme)<sub>n</sub>; the ethylene complex [LWCl(C<sub>2</sub>H<sub>4</sub>)] 6 is a side product in the synthesis of 5; all complexes are structurally characterised.

Complexes of the general formula  $[L_nM\equiv E]$  (E = P, As) with terminal ligands represent a new class of compounds.<sup>1</sup> With the synthesis and structural characterisation of the phosphido complexes  $[(Ar'RN)_3Mo\equiv P]$  (Ar' = 3,5-C<sub>6</sub>H<sub>3</sub>Me<sub>2</sub>, R = C(CD<sub>3</sub>)<sub>2</sub>CH<sub>3</sub>) 1<sup>2</sup> and  $[N(CH_2CH_2NSiMe_3)_3M\equiv E]$  [M = W (**2a**), Mo (**2b**)]<sup>3</sup> the speculation about the existence of stable compounds of this class was brought to an end. We have shown that one possibility to synthesise the phosphido complex **2a** is starting from Li[P(SiMe<sub>3</sub>)<sub>2</sub>] according to eqn. (1).<sup>4</sup> Using



Li[As(SiMe<sub>3</sub>)<sub>2</sub>] in reaction (1), we were also able to synthesise and structurally characterise the arsenido derivative **3**.<sup>4</sup> This raised the possibility of generating complexes with terminal antimonido and bismuthido ligands. The salts Li[E(SiMe<sub>3</sub>)<sub>2</sub>] (E = P, As, Sb, Bi) have been known for a long time for all pnictogen elements,<sup>5</sup> therefore this seems to be a viable route to compounds containing terminal Sb and Bi ligands.

We have found, however, that irrespective of reaction conditions, the conversion between [{N(CH<sub>2</sub>CH<sub>2</sub>NSi- $Me_{3}$  WCl] 4 and Li[Sb(SiMe\_{3})\_2(dme)\_n] did not proceed. The steric demand of the SiMe<sub>3</sub> groups in complex 4 obviously inhibits the substitution of the Cl atom by the Sb moiety. The use of a sterically less bulky tris(2-amidoethyl)amine ligand should however enable W-Sb bond formation. Herein we report characterisation the synthesis and of  $[{N(CH_2CH_2N(Np))_3}WCl]$  **5** (Np = CH<sub>2</sub>C(CH<sub>3</sub>)<sub>3</sub>) and the reactivity of **5** with  $\text{Li}[\text{Sb}(\text{SiMe}_3)_2(\text{dme})_n]$ .

The reaction of  $WCl_4(dme)$  with  $Li_3[N(CH_2CH_2N(Np))_3]$ leads to the brown compound  $[{N(CH_2CH_2N(Np))_3}WCl]$  5. A quantity green ethylene small the of complex  $[{N(CH_2CH_2N(Np))_2CH_2CH_2NH(Np)}WCl(\eta^2-C_2H_4)]$  6 was also isolated.6 While complex 5 dissolves well in toluene and is moderately soluble in pentane, compound 6 undergoes decomposition even in solvents of low polarity, resulting in the formation of an insoluble solid which could not be characterised. In the mass spectra of 5 and 6 the peaks for the molecular ions are observed. The <sup>1</sup>H NMR spectrum of 5 reveals broad signals at high and low field for the paramagnetic d<sup>2</sup>-tungsten complex.<sup>†</sup>

The source of the ethylene in **6** is uncertain. It is possibly a result of a fragmentation of the tren ligand itself. Schrock and co-workers observed C–N bond cleavage of the ligand framework of a tren complex of tantalum, yielding a N-allyl unit.<sup>7</sup> Moreover, the low yields generally observed in the reactions of

chlorotungsten(IV) complexes with tren ligands indicate various side reactions during the synthesis.<sup>8</sup>

In the structure of the trigonal bipyramidal tungsten complex 5 the W–Cl and the W–N<sub>ax</sub> distances [2.389(2) and 2.179(5) Å] are only slightly shorter than the equivalent distances [2.399(2)]and 2.182(6) Å] in the isostructural Me<sub>3</sub>Si substituted complex 4.<sup>‡</sup> In 6 (Fig. 1) the W atom exhibits a distorted octahedral coordination geometry.<sup>‡</sup> This is one of the few examples where the tetradentate ligand tris(2-amidoethyl)amine does not bind in  $C_3$ -symmetrical fashion to a transition metal.<sup>9</sup> This is due to the formation of only two W-N bonds [W-N3 1.964(3), W-N4 2.002(3) Å], whereas N(2) and N(1) coordinate merely with their lone-pair to the tungsten centre [W-N1 2.254(3), W-N2 2.399(3) Å]. The ethylene experiences strong back donation from the d<sup>2</sup> W atom, which is evident from the elongated C-C bond [1.416(6) Å] and short W-C distances of 2.170(4) and 2.175(3) Å. The complex  $[W_2(ONp)_6(\eta^2-C_2H_4)_2]$ , in which a bridging ethylene ligand forms a  $W_2C_2$  tetrahedron with the W atoms, shows comparable bond lengths [W-C 2.14(2), C-C 1.45(2) Å].10

The reaction of 5 with  $[LiSb(SiMe_3)_2(dme)_n]$  for 48 h at 110 °C in the dark leads to Sb–W bond formation as shown in eqn. (2). Instead of a terminal antimonido complex, the symmetrically Sb-bridged complex 7 is formed, which is the first neutral Sb-containing example for this class of compounds. Cationic complexes with  $\mu$ -E<sub>1</sub> ligands for the heavy group 15 elements were described by Huttner and co-workers.<sup>11</sup> Numerous compounds of the form  $[L_nM=E=ML_n]$  are known, which contain a symmetrical nitrogen bridge, but not for pnictogens heavier than phosphorus.<sup>12</sup> Stephan and co-workers succeeded in the synthesis of the complex  $[\{Cp_2Zr\}_2(\mu\text{-}P)].^{13}$  Cummins and co-workers isolated [{( $\hat{R}'RN$ )<sub>3</sub>Mo}<sub>2</sub>( $\mu$ -P)] (R = Ph; R' =t-Bu) at -35 °C as a labile intermediate in the transfer reaction of a terminal  $P_1$  ligand from the phosphido complex 1 to the  $d^3$ complex  $[(\mathbf{R'RN})_3\mathbf{Mo}]$  ( $\mathbf{R'} = \mathbf{C}_6\mathbf{\hat{H}}_5$ ,  $\mathbf{\hat{R}} = t$ -Bu).<sup>14</sup> It could not be established whether 7 is the result of such an irreversible



**Fig. 1** Molecular structure of **6** (ellipsoids drawn at 30% probability level). Selected bond lengths [Å] and angles [°]: W–Cl 2.5116(12), W–N(1) 2.254(3), W–N(2) 2.399(3), W–N(3) 1.964(3), W–N(4) 2.002(3), C(1)– C(2) 1.416(6), W–C(1) 2.175(3), W–C(2) 2.1704(4), C(1)–W–C(2) 38.0(2), N(1)–W–Cl 94.00(9), N(1)–W–C(1) 165.64(14), N(1)–W–C(2) 156.8 (13), N(1)–W–N(2) 74.28(11), N(1)–W–N(3) 79.69(12), N(1)–W–N(4) 80.41(12), Cl–W–N(2) 74.57(8), Cl–W–N(4) 92.26(10), N(2)–W–N(3) 87.71(12), N(3)–W–N(4) 102.90(14).



transfer reaction, or after an Sb–W bond formation an intermolecular Me<sub>3</sub>SiCl elimination is followed. The M–E–M system of such neutral complexes possesses a  $(1\pi_u)^4(1\pi_g)^3$  electron configuration with one unpaired electron. Therefore **7** is a mixed valent W(Iv)/W(v) species.

The molecular structure of **7** (Fig. 2) reveals two W-tren units bonded to one Sb atom in a staggered configuration.<sup>‡</sup> To the best of our knowledge the Sb–W distance of 2.5738(8) Å is the shortest Sb–W bond distance known. The W–N<sub>eq</sub> bond lengths are consistent with those found in **2** and **3**. The axial W–N(1) bond in **7** is 0.1 Å shorter than the equivalent distance in compounds containing a W=E triple bond (E = P,<sup>3</sup> As<sup>4</sup>).



**Fig. 2** Molecular structure of **7** (ellipsoids drawn at 30% probability level). Selected bond lengths [Å] and angles [°]: W–Sb 2.5738(8), W–N(1) 2.243(14), W–N(2) 2.000(7), W–Sb–W 180.0, Sb–W–N(1) 180.0, Sb–W–N(2) 101.0(2), N(1)–W–N(2) 79.0(2), N(2)–W–N(2) 116.4(1).

The equilibrium structure of **7** was calculated using the B-P86/SVP approximation.<sup>15</sup> The equal W–Sb bond distances of the paramagnetic compound **7** with respect to an almost linear W–Sb–W framework of 179.6° are 2.612 Å. The experimental distance of the exact linear system in **7** with a centre of inversion at the Sb atom is found to be approximately 0.04 Å shorter. According to the calculations, the corresponding Np-substituted complex with a terminal antimonido ligand possesses a W–Sb bond length of 2.514 Å, an anionic form of complex **7** reveals a W–Sb distance of 2.609 Å.

The results show that a reduction of the steric demand of the R group on the tren ligand leads to novel neutral Sb-bridged complexes. Current work is directed towards the synthesis of such complexes of the other pnictides and towards an optimisation of the size of the substituent R on the tren ligand in order to generate complexes with terminal Sb and Bi ligands.

The authors thank the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie for financial support.

## Notes and references

<sup>†</sup> Spectroscopic data: **5**: <sup>1</sup>H NMR (C<sub>6</sub>D<sub>6</sub>)  $\delta$  9.36 (s, CH<sub>3</sub>), -26.1 (b, CH<sub>2</sub>), -56.4 (b, CH<sub>2</sub>); FI-MS (70 eV, 120 °C) m/z (%): 573 (100) [M<sup>+</sup>]; **6**: FI-MS

(10 kV, 120 °C) m/z (%): 603 (100) [M<sup>+</sup>], C,H,N, Calc. for C<sub>23</sub>H<sub>50</sub>ClN<sub>4</sub>W: C 45.89; H 8.37; N 9.31; found: C 45.69; H 8.38; N 9.13; **7**:  $\mu_{eff}$  (Evan's method, C<sub>6</sub>D<sub>8</sub>, 300 K) = 2.07  $\mu_{B}$ ; EI-MS (70 eV, 180 °C): 1197 (8) [M<sup>+</sup>], 660 (91) [WSbN<sub>4</sub>C<sub>21</sub>H<sub>45</sub><sup>+</sup>], 603 (100) [WSbN<sub>4</sub>C<sub>18</sub>H<sub>39</sub><sup>+</sup>].

<sup>‡</sup> Crystal structure analyses of 5-7 were performed on a STOE STADI IV ( $\omega$ -scan mode) diffractometer with Mo-K $\alpha$  radiation ( $\lambda = 0.71073$  Å) with empirical absorption corrections (Psi-scans). The structures were solved by direct methods using SHELXS-86,16a full-matrix-least-squares refinement on F<sup>2</sup> in SHELXL-93<sup>16b</sup> with anisotropic displacement for non-H atoms. Hydrogen atoms were located in idealized positions and refined isotropically according to the riding model. Crystal structure analysis: 5: C<sub>21</sub>H<sub>45</sub>ClN<sub>4</sub>W, M = 572.91, monoclinic, space group  $P_{21/c}$ ; a = 13.203(3), b = 11.450(2), c = 17.000(3) Å,  $\beta = 91.74(3)^\circ$ , T = 200(2) K,  $Z = 4, U = 2568.8(9) \text{ Å}^3, D_c = 1.481 \text{ Mg m}^{-3}, \mu(\text{Mo-K}\alpha) = 46.13 \text{ cm}^{-1},$ F(000) = 1160. A total of 5441 reflections with  $3.08 \le 2\theta \le 55.02^\circ$  were collected, of which 5404 were independent and 4048 reflections with  $I \ge$  $2\sigma(I)$ . Final residuals are  $R_1 = 0.0370$  and  $wR_2 = 0.1024$  and GOF = 1.129 for 253 variables. Residual electron density was found to be between 1.072 and  $-0.728 \text{ e} \text{ Å}^{-3}$ . **6**: C<sub>23</sub>H<sub>50</sub>ClN<sub>4</sub>W, M = 601.97, monoclinic, space group  $P2_1/n; a = 11.185(2), b = 17.142(3), c = 14.216(3) \text{ Å}, \beta = 95.13(3)^\circ, T$ = 203(2) K, Z = 4, U = 2714.8(9) Å<sup>3</sup>,  $D_c$  = 1.473 Mg m<sup>-3</sup>,  $\mu$ (Mo-K $\alpha$ ) = 43.69 cm<sup>-1</sup>, F(000) = 1228. A total of 4171 reflections with  $3.74 \le 2\theta$  $\leq$  50.04° were collected, of which 4171 were independent and 3835 reflections with  $I \ge 2\sigma(I)$ . Final residuals are  $R_1 = 0.0240$  and  $wR_2 =$ 0.0665 and GOF = 1.045 for 271 variables. Residual electron density was found to be between 1.735 and -1.880 e Å<sup>-3</sup>. 7: C<sub>42</sub>H<sub>90</sub>N<sub>8</sub>SbW<sub>2</sub>, M =1196.67, trigonal, space group  $R\overline{3}$ ; (no. 148), a = b = 16.409(3), c = 15.669(3) Å, T = 200(2) K, Z = 3, U = 3653.7(12) Å<sup>3</sup>,  $D_c = 1.632$  Mg  $m^{-3}$ ,  $\mu$ (Mo-K $\alpha$ ) = 52.97 cm<sup>-1</sup>, F(000) = 1791. A total of 1840 reflections with  $3.86 \le 2\theta \le 54.96^\circ$  were collected, of which 1840 were independent and 1555 reflections with  $I \ge 2\sigma(I)$ . Final residuals of  $R_1 = 0.0470$  and  $wR_2$ = 0.1288 and GOF = 1.112 for 83 variables. Residual electron density was found to be between 1.634 and -2.153 e Å<sup>-3</sup>. CCDC 182/1058.

- 1 Reviews: M. Scheer, Angew. Chem., 1995, **107**, 2151; Angew. Chem., Int. Ed. Engl., 1995, **34**, 1997; Coord. Chem. Rev., 1997, **163**, 271.
- 2 C. E. Laplaza, W. M. Davis and C. C. Cummins, Angew. Chem., 1995, 107, 2181; Angew. Chem., Int. Ed. Engl., 1995, 34, 2042.
- 3 N. Zanetti, R. R. Schrock and W. M. Davis, Angew. Chem., 1995, 107, 2184; Angew. Chem., Int Ed. Engl., 1995, 34, 2044.
- 4 M. Scheer, J. Müller and M. Häser, Angew. Chem., 1996, 108, 2637; Angew. Chem., Int. Ed. Engl., 1996, 35, 2492.
- 5 G. Becker, A. Münch and C. Witthauer, Z. Anorg. Allg. Chem., 1982, 492, 15; G. Becker and C. Witthauer, Z. Anorg. Allg. Chem., 1982, 492, 28; O. Mundt, G. Becker, M. Rössler and C. Witthauer, Z. Anorg. Allg. Chem., 1983, 506, 42.
- 6 Li<sub>3</sub>[N(CH<sub>2</sub>CH<sub>2</sub>NNp)<sub>3</sub>] was synthesised from N(CH<sub>2</sub>CH<sub>2</sub>NNp)<sub>3</sub> with three equivalents of BuLi. The neopentyl-substituted amine is obtained from conversion of tris(2-amionoethyl)amine with pivalinic anhydride and subsequent reaction of the acid amide with LiAlH<sub>4</sub>. The complex 5 was synthesised according to a modified procedure.<sup>4</sup> 6 crystallises in the form of green crystals along with 5.
- 7 J. S. Freundlich, R. R. Schrock and W. M. Davis, J. Am. Chem. Soc., 1996, 118, 3643.
- 8 Usually the yields are below 15%. Using fluorinated substituents, however, more of the designed product can be obtained.
- 9 Compare: D. A. Dobbs, R. R. Schrock and W. M. Davis, *Inorg. Chim. Acta*, 1997, **263**, 171.
- 10 S. T. Chacon, M. H. Chisholm, O. Eisenstein and J. C. Huffmann, J. Am. Chem. Soc., 1992, 114, 8497.
- A. Strube, G. Huttner and L. Zsolnai, *Angew. Chem.*, 1988, **100**, 1586;
  F. Bringewski, G. Huttner and W. Imhof, *J. Organomet. Chem.*, 1993, **448**, C3; S. J. Davies, N. A. Compton, G. Huttner, L. Zsolnai and S. E. Garner, *Chem. Ber.*, 1991, **124**, 2731.
- 12 K. Dehnicke and J. Strähle, Angew. Chem., 1992, 104, 978; Angew. Chem., Int. Ed. Engl., 1992, 32, 955.
- 13 M. C. Fermin, J. Ho and D. W. Stephan, *Organometallics*, 1995, 14, 4247.
- 14 M. J. A. Johnson, P. M. Lee, A. L. Odom, W. M. Davis and C. C. Cummins, Angew. Chem., 1997, 109, 110; Angew. Chem., Int. Ed. Engl., 1997, 36, 87.
- 15 Structure optimizations were performed using the TURBOMOLE set of programs with the RI-J approximation (K. Eichhorn, O. Treutler, H. Öhm, M. Häser and R. Ahlrichs, *Chem. Phys. Lett.*, 1995, **242**, 652). For further details concerning the methods and basis sets, see ref. 4 and citations therein.
- 16 (a) G. M. Sheldrick, SHELXS-86, University of Göttingen, 1986; (b) G. M. Sheldrick, SHELXL-93, University of Göttingen, 1993.

Communication 8/06574H