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Photochemical reactions of chiral 2,3-dihydro-4(1H)-pyridones: asymmetric
synthesis of (2)-perhydrohistrionicotoxin
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The first chiral auxiliary-mediated asymmetric synthesis of
(2)-perhydrohistrionicotoxin is described.

In an effort to expand the utility of chiral 2,3-dihydro-4(1H)-
pyridones as synthetic building blocks,1 we are exploring their
annulation using intramolecular [2+2] photocycloaddition reac-
tions.2 As was first demonstrated by Neier,3 novel ring systems
can be prepared from dihydropyridones using this approach. We
were able to demonstrate through model studies that the
skeleton of perhydrohistrionicotoxin 1 was accessible using this
strategy.4 Histrionicotoxin 2 is one of the biologically active
alkaloids found in the skin secretions of the neotropical frog
Dendrobates histrionicus.5 Alkaloids 1 and 2 have been used in

studies of the mechanisms involved in transsynaptic transmis-
sion of neuromuscular impulses. The biological activity and
novel structure of these alkaloids have stimulated numerous
synthetic studies.6 Several racemic and two enantioselective
syntheses of 1 have been published. In addition, one asymmetric
route to histrionicotoxin 2 has been reported.6c The enantio-
selective routes used enantiopure intermediates prepared by
resolution7 or derived from L-glutamic acid.6a Here we report a
novel asymmetric synthesis of 1 using a photochemical
conversion of an enantiopure 2,3-dihydro-4(1H)-pyridone as a
key step. The enantiopure dihydropyridone was prepared by an
efficient chiral auxiliary-mediated asymmetric synthesis.1 The
synthetic plan called for a stereoselective intramolecular [2+2]
cycloaddition of an enantiopure dihydropyridone to set the
stereochemistry at C-6 and C-7, and a subsequent cyclobutane
ring opening to provide the azaspiroundecane skeleton of 1.

Reaction of enantiopure 1-acylpyridinium salt 4, prepared in
situ from 4-methoxy-3-(triisopropylsilyl)pyridine 38 and the
chloroformate of (2)-(1R,2S,4R)-2-(a-cumyl)-4-isopropyl-
cyclohexanol (CPC),9 with n-pentylmagnesium bromide in
THF–toluene at 278 °C gave the crude dihydropyridone 5 in
95% yield and 90% de (Scheme 1). Purification by radial PLC
(silica gel, EtOAc–hexanes) afforded a 91% yield of pure 5 [mp
75–78 °C; [a]D

23 248.1 (c 0.88, CDCl3)]. Treatment of 5 with
NaOMe in MeOH followed by aqueous 10% HCl provided
dihydropyridone 6 [[a]D

25 +353 (c 0.18, CHCl3)] in 84% yield,
and the chiral auxiliary [(2)-CPC] was recovered in 95% yield.
Acylation of 6 with BunLi and ClCO2Bn gave a 90% yield of
enantiopure carbamate 7 [[a]D

23283.7 (c 2.24, CHCl3)]. A side
chain was introduced at C-6 of 7 through a 1,4-addition and
oxidation sequence. In the presence of TMSCl, copper-
mediated conjugate addition of Grignard reagent 8 to 7 provided
silyl enol ether 9. Oxidation of crude 9 with Pd(OAc)2 gave
dihydropyridone 10 in 92% overall yield for the two steps.1c

The acetal was hydrolyzed and the resulting alcohol was
converted to iodide 11 in high yield (84%). The C-4 carbonyl of
11 was protected as the triethylsily enol ether 12. The synthesis

Scheme 1 Reagents and conditions: i, ClCO2R*; ii, C5H11MgCl; iii, H3O+;
iv, NaOMe, MeOH, then 10% HCl, v, BunLi; vi, ClCO2Bn; vii, 8, CuBr,
TMSCl; viii, Pd(OAc)2, MeCN; ix, oxalic acid; x, NIS, PPh3; xi, NaHMDS,
TESCl.
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was continued (Scheme 2) by treatment of crude 12 with the
anion of 13, prepared from the corresponding commercially
available aldehyde, to give enone 14 in 94% yield. Protection of
the ketone carbonyl using enantiopure bis-TMS ether 1510

provided ketal 16 (87%). Since the C-2 substituent of 16 is axial,
due to A1,3 strain,11 photocyclization was anticipated to be
highly stereoselective for the less hindered olefin face. On
photolysis in acetone (460 W Hanovia Hg lamp, 16 min, 5 °C),
16 gave a 79% yield of cycloadduct 17 as the sole isolated
product. The (R,R)-hydrobenzoin ketal of 16 is important for
high facial selectivity, for the corresponding ethylene ketal gave
only a 7:1 mixture of photoadducts. At this stage of the
synthesis, installation of three stereogenic centers with the
correct relative and absolute stereochemistry needed for the
construction of 1 had been achieved. Treatment of 17 with SmI2
in THF and DMPU effected cyclobutane ring opening to give
spirocyclic ketone 18 in 70% yield, which was converted to a
mixture of vinyl triflates 19 (90%) using LiHMDS and N-

(5-chloro-2-pyridyl)triflimide.12 Catalytic hydrogenation of
this mixture effected vinyl triflate reduction, cleavage of the
ketal, and removal of the Z group to provide the known amino
ketone 206a in 81% yield. The synthesis of (2)-perhydrohis-
trionicotoxin 1 was completed by reduction of 20 with
LiAl(OBut)3H according to the procedure of Winkler.6a Our
synthetic 1 exhibited spectral data in agreement with reported
data of authentic material.5,6 The optical rotation [[a]D283.8 (c
0.2, CH2Cl2)] was also in agreement with literature values
[[a]D

22 284.1 (c 0.024, CH2Cl2); [a]D
22 283.1 (c 0.0067,

CH2Cl2)].6a

In summary, the first chiral auxiliary-mediated asymmetric
synthesis of (2)-perhydrohistrionicotoxin was accomplished in
15 steps (14% overall yield) with a high degree of ster-
eoselectivity. Key steps include a highly stereoselective intra-
molecular [2+2] photocyclization of dihydropyridone 16 and a
SmI2-promoted cyclobutane ring opening, which provide the
azaspiroundecane skeleton of the alkaloid.

We express appreciation to the National Institutes of Health
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Scheme 2 Reagents and conditions: i, 13, LHMDS, THF; ii, 10% HCl, then
2 M NaOH; iii, 15, TMSOTf; iv, hn, acetone, 5 °C, 16 min; v, SmI2, THF,
DMPU; vi, LHMDS, THF; vii, N-(5-chloro-2-pyridyl)triflimide; viii, H2,
Pd(OH)2, Li2CO3, EtOH; ix, LiAl(OBut)3H.
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