A. C. Legon

School of Chemistry, University of Exeter, Stocker Road, Exeter, UK EX4 4QD. E-mail: A.C.Legon@exeter.ac.uk

Received (in Cambridge, UK) 18th September 1998, Accepted 20th October 1998

Intermolecular stretching force constants k_{σ} determined from the rotational spectra of complexes B…XY, where B is one of the Lewis bases CO, C₂H₂, C₂H₄, HCN, H₂S and NH₃ and XY is a dihalogen F₂, Cl₂, Br₂, BrCl and ClF, are used to establish a quantitative scale of gas-phase electrophilicities E_{XY} of the halogens.

The nature of the initial interaction of homo- or heteronuclear diatomic halogen molecules XY with simple Lewis bases B in chemically reactive mixtures of the two components is a matter of fundamental interest in chemistry.¹ It has recently proved possible to isolate pre-reactive complexes of the type B...XY in gaseous mixtures and then characterise them through their rotational spectra by using a fast-mixing nozzle² in combination with a Fourier-transform microwave spectrometer.^{3,4} Thereby precise values of several properties of the isolated species B...XY become available, including its angular and radial geometry, the strength of binding (as measured by the intermolecular stretching force constant k_{σ}), and the extent of electric charge redistribution within XY on complex formation. The efficacy of the fast-mixing nozzle is such that even prereactive complexes formed by NH₃, CO, H₂S, C₂H₂ or $\hat{C_2}H_4$ with F_2 or CIF can be detected, ⁵⁻¹¹ despite the rapid and violent reactions that would attend mixing of the components under normal conditions. Consequently, trends in the properties of B...XY may be identified not only by variation of the Lewis bases over a wide range of types but also by examining complexes with halogens as reactive as fluorine and chlorine monofluoride.

Such an approach has already revealed¹² a remarkable parallelism between the angular geometries of B···XY and B···HX (X,Y = F, Cl or Br). Thus, the pair B···HX and B···XY are isostructural for a given B over the range of XY and HX. This parallelism establishes that some simple rules first proposed for predicting angular geometries of hydrogenbonded species B···HX,^{13,14} and based on simple electrostatic considerations, also apply to the halogen complexes B···XY. The question then arises: Does the parallelism extend to other properties?

Another property of B···HX complexes that was found to vary systematically with B and HX is k_{σ} , which is the restoring force per unit infinitesimal displacement of the hydrogen bond along its dissociation co-ordinate and, therefore, one measure of the

strength of the interaction. In particular, it was discovered^{15,16} that k_{σ} could be partitioned between B and HX to define a nucleophilicity $N_{\rm B}$ of the proton acceptor region of B and the electrophilicity $E_{\rm HX}$ of HX. The relationship between $N_{\rm B}$, $E_{\rm HX}$ and k_{σ} was established to be¹⁵

$$k_{\sigma} = c N_{\rm B} E_{\rm HX} \tag{1}$$

where *c* is constant. This empirical equation could be used to predict k_{σ} of a large number of B···HX from a few $N_{\rm B}$ and $E_{\rm HX}$ values. For the particular scales of nucleophilicities and electrophilicities chosen, the value c = 0.25 N m⁻¹ was appropriate. The advantage of the $N_{\rm B}$ and $E_{\rm HX}$ thereby established is that they define the propensity of a molecule to interact with either an electrophile or a nucleophile, respectively, in the limit where one molecule probes the other with only minor perturbation, and in isolation in the gas phase. The empirical eqn. (1) has been rationalised on the basis of the electrostatic model of the hydrogen bond elsewhere.¹⁵

The purpose of this communication is to examine whether the k_{σ} values of B···XY complexes, where B is CO, C₂H₂, C₂H₄, HCN, H₂S or NH₃ and XY is F₂,Cl₂, Br₂, BrCl or ClF, obey eqn. (1) and, if so, to establish a scale of electrophilicities E_{XY} for halogens and interhalogens. Another aspect of interest is whether a common set of nucleophilicities $N_{\rm B}$ applies to both the B···HX and B···XY series.

Table 1 displays a matrix of k_{σ} values for the series of B···XY defined earlier.^{5–11,17–32} All values were derived from centrifugal distortion constants D_J or Δ_J established from analyses of rotational spectra, the latter usually observed with the fast-mixing nozzle/FT microwave spectrometer combination. Relationships between k_{σ} and D_J or Δ_J valid in the quadratic approximation for rigid, unperturbed subunits B and HX or XY have been derived by Millen for complexes of various symmetries.³³

To test the validity of eqn. (1) for the B···XY in Table 1, the following procedure was used. First, the electrophilicity of BrCl was arbitrarily assigned the value $E_{BrCl} = 9.0$. Then E_{BrCl} was used with the k_{σ} values of all but one member of the series B···BrCl and c = 0.25 N m⁻¹ to generate the nucleophilicities $N_{\rm B}$ for the Lewis bases B = CO, C₂H₂, C₂H₄, HCN and H₂S. This approach was not used for $N_{\rm NH_3}$ because there is evidence (see later) that H₃N···BrCl (and H₃N···ClF) involve significant

Table 1 Values of the intermolecular stretching force constant $k_o/N \text{ m}^{-1}$ for complexes B...XY^a

	XY							
 В	F_2	Cl ₂	Br ₂	BrCl	ClF			
СО	-(1.3)	$3.70^{b}(3.6)$	5.13 ^c (5.2)	6.27^{d} (6.3)	7.02^{e} (6.9)			
C_2H_2	-(2.0)	5.61 ^f (5.4)	- (7.8)	$9.4^{g}(9.5)$	$10.02^{h}(10.3)$			
C_2H_4	-(2.2)	5.89^i (6.0)	- (8.7)	10.5 ^j (10.6)	10.98^{k} (11.5)			
HCN	$2.61^{l}(2.3)$	6.6^m (6.2)	-(9.1)	11.09^{n} (11.0)	12.330 (12.0)			
H_2S	$2.36^{p}(2.6)$	$6.3^{q}(6.9)$	-(10.0)	12.07 ^r (12.1)	13.34s (13.2)			
NH ₃	$4.7^{t}(4.7)$	12.71 ^u (12.6)	18.5 ^v (18.3)	26.7w (22.3)	34.3 ^x (24.3)			

^{*a*} Values in italics in parentheses are calculated from the $N_{\rm B}$ and $E_{\rm XY}$ of Table 2 used in eqn. (1). ^{*b*} Ref. 18. ^{*c*} Ref. 24. ^{*d*} Ref. 26. ^{*e*} Ref. 7. ^{*f*} Ref. 19. ^{*s*} Ref. 27. ^{*h*} Ref. 10. ^{*i*} Ref. 20. ^{*j*} Ref. 28. ^{*k*} Ref. 11. ^{*l*} Ref. 17. ^{*m*} Ref. 21. ^{*n*} Ref. 29. ^{*o*} Ref. 32. ^{*p*} Ref. 6. ^{*q*} Ref. 22. ^{*r*} Ref. 30. ^{*s*} Ref. 8. ^{*t*} Ref. 5. ^{*u*} Ref. 23. ^{*v*} Ref. 25. ^{*w*} Ref. 31. ^{*s*} Ref. 9. charge transfer in addition to a simple electrostatic interaction.

Next, the $N_{\rm B}$ values so generated and recorded in Table 2 were used to establish E_{XY} for $XY = F_2$, Cl_2 , Br_2 and ClF. For example, the appropriate $N_{\rm B}$ and k_{σ} pair was substituted into eqn. (1) to give one E_{CIF} value for each member of the series B...ClF. The mean value was then taken. Values of $E_{\rm F_2}$, $E_{\rm Cl_2}$, $E_{\rm Br_2}$ and $E_{\rm CIF}$ obtained in this way are included in Table 2 with the set of nucleophilicities $N_{\rm CO}$, $N_{\rm C_2H_2}$, $N_{\rm C_2H_4}$, $N_{\rm HCN}$, $N_{\rm H_2S}$ and $N_{\rm NH_3}$. For the series B···Cl₂, B = NH₃ was not used to give a value of E_{Cl_2} , but instead the mean value of E_{Cl_2} from the remaining members was combined with k_{σ} of H₃N···Cl₂ to define $N_{\rm NH_3}$. This approach was preferred because $N_{\rm NH_3}$ could not be satisfactorily obtained from H₃N…BrCl, for reasons alluded to earlier. Likewise, H₃N…ClF was not used in the evaluation of E_{CIF} .

As a check on the procedure, the $N_{\rm B}$ and $E_{\rm XY}$ of Table 2 were employed in eqn. (1) to generate k_{σ} for all complexes implied in Table 1. The predicted k_{σ} , shown in Table 1 in parentheses, are in good agreement with the experimental values when available, except for H₃N···BrCl and H₃N···ClF, whose large k_{σ} are seriously underestimated. These disagreements can be understood when the electric charge redistribution in the XY subunit, as estimated from the halogen nuclear quadrupole coupling constants, is considered for each member of the series B...Cl₂,³⁴ $B{\cdots}BrCl^{35}$ and $B{\cdots}ClF.^{12}$ Only a few hundredths of an electronic charge is transferred from X to Y in most complexes except H₃N···BrCl and H₃N···ClF and, in particular, it was shown to be necessary to assume a significant contribution of the ionic structure [H₃NCl]+...F- in a valence bond description of the latter complex.9 Presumably a similar assumption is appropriate to the strongly bound H_3N ...BrCl³¹ but all other B...XY can be understood on the basis of the simple electrostatic model without invoking such charge transfer.^{12,34,35}

Some interesting conclusions about B...XY interactions are available by reference to Tables 1 and 2. First, the fact that eqn. (1) applies to the two series of complexes B...HX and B...XY (with exceptions noted) suggests that the intermolecular binding is of a common type in both. For B...HX, the hydrogen bond interaction is well established to be of the simple electrostatic type $B^{...\delta_+}H-X^{\delta_-}$, where ${}^{\delta_+}H$ interacts with a nucleophilic region of $B^{.13,14,36}$ Presumably, this is also the case for the halogen complexes, with interactions of the type $B^{\dots\delta+}X^{\delta^-}_{\delta^-}X^{\delta^+}$ or $B^{\dots\delta+}X-Y^{\delta-}$. It is noteworthy that the order of the electric quadrupole moments of the homonuclear dihalogens is F_2 < $\hat{C}l_2 < \hat{B}r_2$, while BrCl and CIF have electric dipole moments of similar magnitude.37 This order of electric moments is consistent with the order $F_2 < Cl_2 < Br_2 < BrCl < ClF$ established here for the electrophilicities E_{XY} of the halogens (see Table 2).

The second conclusion is that, with one exception, the nucleophilicity $N_{\rm B}$ obtained for each B from the experimental k_{σ}

Table 2 Nucleophilicities $N_{\rm B}$ and electrophilicities $E_{\rm XY}$ of a series of Lewis bases B and dihalogen molecules XY

	Nucleophilicities $N_{\rm B}$												
B This work ^a Refs. 15 and	CO 2.8 3.4	C ₂ H ₂ 4.2 5.1	C ₂ H 4.7 4.7		HCN 4.9 7.3	H ₂ S 5.4 4.8	NH ₃ 9.9 11.5						
Electrophilicities E_{XY}^c or E_{HX}^d													
XY	F ₂	Cl_2	Br ₂	BrCl	ClF	HBr	HCl	HF					
$E_{\rm XY}$ or $E_{\rm HX}$	1.9	5.1	7.4	9.0	9.8	4.2	5.0	10.0					
^{<i>a</i>} Estimated l described in complexes an	by us the t d ean	ing the h ext. b E (1) (see	k_{σ} from stimated e refs. 15	Table from and 10	with the k_{o}	eqn. (1 of a s	l) in the series o	e manner f B…HX 15.					

of Table 1 and eqn. (1) is similar to that established from the B...HX series. The exception is HCN. The $N_{\rm B}$ and $E_{\rm HX}$ from the B...HX series are included in Table 2 for convenience. Evidently, HCN is a better nucleophile with respect to the hydrogen halides than to dihalogen molecules.

The author thanks the EPSRC for the award of a Senior Fellowship.

Notes and references

- 1 See for example, R. S. Mulliken and W. B. Person, Molecular Complexes, A Lecture and Reprint Volume, Wiley-Interscience, New York, 1969, ch. 5.
- 2 A. C. Legon and C. A. Rego, J. Chem. Soc., Faraday Trans., 1990, 86, 1915
- 3 T. J. Balle and W. H. Flygare, Rev. Sci. Instrum., 1981, 52, 33.
- A. C. Legon in Atomic and Molecular Beam Methods, ed. G. Scoles, Oxford University Press, New York, 1992, vol. 2, ch. 9.
- 5 H. I. Bloemink, K. Hinds, J. H. Holloway and A. C. Legon, Chem. Phys. Lett., 1995, 245, 598.
- 6 G. Cotti, C. M. Evans, J. H. Holloway and A. C. Legon, Chem. Phys. Lett., 1997, 264, 513.
- 7 K. Hinds, J. H. Holloway and A. C. Legon, Chem. Phys. Lett., 1995, 242, 407,
- 8 H. I. Bloemink, K. Hinds, J. H. Holloway and A. C. Legon, Chem. Phys. Lett., 1995, 242, 113.
- 9 H. I. Bloemink, C. M. Evans, J. H. Holloway and A. C. Legon, Chem. Phys. Lett., 1996, 248, 260.
- 10 K. Hinds, J. H. Holloway and A. C. Legon, J. Chem. Soc., Faraday Trans., 1996, 92, 1291.
- 11 H. I. Bloemink, J. H. Holloway and A. C. Legon, Chem. Phys. Lett., 1996, 250, 567
- 12 A. C. Legon, Chem. Phys. Lett., 1997, 279, 55.
- 13 A. C. Legon and D. J. Millen, Faraday Discuss. Chem. Soc., 1982, 73, 71
- 14 A. C. Legon and D. J. Millen, Chem. Soc. Rev., 1987, 16, 467.
- 15 A. C. Legon and D. J. Millen, J. Am. Chem. Soc., 1987, 109, 356.
- 16 A. C. Legon and D. J. Millen, J. Chem. Soc., Chem. Commun., 1987, 986.
- 17 S. A. Cooke, G. Cotti, C. M. Evans, J. H. Holloway and A. C. Legon, Chem. Phys. Lett., 1996, 262, 308.
- 18 W. Jäger, Y. Xu and M. C. L. Gerry, J. Phys. Chem., 1993, 97, 3685.
- 19 H. I. Bloemink, S. A. Cooke, K. Hinds, A. C. Legon and J. C. Thorn, *J. Chem. Soc., Faraday Trans.*, 1995, **91**, 1891. 20 H. I. Bloemink, K. Hinds, A. C. Legon and J. C. Thorn, *Chem. Eur. J.*,
- 1995, **1**, 17.
- 21 A. C. Legon and J. C. Thorn, J. Chem. Soc., Faraday Trans., 1993, 89, 4157.
- 22 H. I. Bloemink, S. J. Dolling, K. Hinds and A. C. Legon, J. Chem. Soc., Faraday Trans., 1995, 91, 2059.
- 23 A. C. Legon, D. G. Lister and J. C. Thorn, J. Chem. Soc., Faraday Trans., 1994, 90, 3205.
- 24 E. R. Waclawik, J. M. A. Thumwood, P. W. Fowler, D. G. Lister and A. C. Legon, unpublished observations.
- 25 H. I. Bloemink and A. C. Legon, J. Chem. Phys., 1995, 103, 876.
- 26 S. Blanco, A. C. Legon and J. C. Thorn, J. Chem. Soc., Faraday Trans., 1994, 90, 1365
- 27 H. I. Bloemink, K. Hinds, A. C. Legon and J. C. Thorn, J. Chem. Soc., Chem. Commun., 1994, 1229.
- 28 H. I. Bloemink, K. Hinds, A. C. Legon and J. C. Thorn, Angew. Chem., Int. Ed. Engl., 1994, 33, 1512.
- 29 K. Hinds and A. C. Legon, Chem. Phys. Lett., 1995, 240, 467.
- 30 H. I. Bloemink and A. C. Legon, Chem. Eur. J., 1996, 2, 265.
- 31 H. I. Bloemink, A. C. Legon and J. C. Thorn, J. Chem. Soc., Faraday Trans., 1995, 91, 781.
- 32 K. Hinds, A. C. Legon and J. H. Holloway, Mol. Phys., 1996, 88, 673
- 33 D. J. Millen, Can. J. Chem., 1985, 63, 1477.
- 34 A. C. Legon, Chem. Phys. Lett., 1995, 237, 291.
- 35 A. C. Legon, J. Chem. Soc., Faraday Trans., 1995, 91, 1881.
- 36 A. D. Buckingham and P. W. Fowler, Can. J. Chem., 1985, 63, 2018.
- 37 See ref. 5 for a convenient summary of the electric moments of F2, Cl2, Br2, BrCl and ClF.

Communication 8/07288D