$[(silox)_2ReO]_2$ (silox = tBu_3SiO) contains a Re=Re bond and terminal oxo ligands

Richard E. Douthwaite, Peter T. Wolczanski* and Erika Merschrod

Cornell University, Baker Laboratory, Department of Chemistry, Ithaca, New York, USA 14853. E-mail: ptw2@cornell.edu

Received (in Bloomington, IN, USA) 14th September 1998, Revised manuscript received 19th October 1998. Accepted 23rd October 1998

The preference for terminal rather than bridging {*i.e.* $[(silox)_2Re]_2(\mu-O)_2$ } oxo ligands in C_2 $(silox)_2(O)Re\equivRe-(O)(silox)_2$ is electronic, not steric, in origin.

Use of the bulky siloxide 'BuSiO⁻ (silox) ligand has enabled investigations of several low coordinate, monomeric complexes of groups 4–6,^{1–4} but metal–metal bond formation cannot always be averted. [(silox)₂MH₂]₂ (M^{IV} = Nb, Ta)⁵ dimers form upon reduction of (silox)₂MCl₃ under H₂ when M^V trihydride derivatives were expected, and while sterically protected (silox)₂W=N^tBu,⁴ an unusual three-coordinate W^{IV} derivative, was isolable, a less hindered W^{III} environment encouraged triple-bond formation, *i.e.* (silox)₂XW≡WX(silox)₂ (X = Cl, H, Me, Et).⁶ Attempts to extend the theme of lowcoordination to Re⁷ have instead resulted in the synthesis of C₂ (silox)₂(O)Re≡Re(O)(silox)₂, whose terminal oxo groups are an apparent oddity.

In contrast to metatheses within groups 4–6, treatments of various rhenium chlorides with Na(silox) were ineffective. Utilization of Tl(silox), prepared *via* metathesis of Hsilox with TlOEt, mitigated some of the undesired redox processes. Addition of Tl(silox) to ReCl₃(PEt₃)₃⁸ (100 °C, 12 h, C₆H₆) afforded orange (silox)ReCl₂(PEt₃)₂ **1** (60%), and a similar treatment (100 °C, 2 d, C₆H₆) of Cl₄ReL₂ (L = THT,⁹ THF)¹⁰ gave the blue, trigonal bipyramidal (X-ray) Re^V complex, (silox)₃ReCl₂ **2** (33%) upon chromatographic work-up in air. Metathesis of Re₃Cl₉ with 3 equiv. Tl(silox) (100 °C, 12 h, C₆H₆) provided dark green, *C*_s (X-ray) [(silox)ReCl]₃(μ -Cl)₃ **3** (85%); further incorporation of silox into **1–3** could not be effected.

Treatment of *cis*-ReOCl₃(PEt₃) $_2^{11}$ with 3 equiv. of Tl(silox) afforded orange (silox) $_2$ (O)Re \equiv Re(O)(silox) $_2$ **4** [eq (1)] in moderate yield (38%) after extensive trituration with hydro-

$$cis-\text{ReOCI}_3(\text{PEt}_3)_2 + 3 \text{ TI(silox)} \xrightarrow{160 \text{ °C}, 3 \text{ d}}_{\text{benzene, -3 TICI}} (silox)_2(0)\text{Re} \equiv \text{Re}(O)(silox)_2 + (1)$$

carbons and crystallization from THF. Two singlets in its ¹H NMR spectrum suggested C_2 symmetry, and IR spectroscopy revealed a moderate band at 944 cm⁻¹ tentatively assigned to v(ReO). An X-ray diffraction study of 4 confirmed the molecular C_2 symmetry, terminal oxo and silox ligands, and distorted tetrahedral geometry about each Re (Fig. 1). Intersilox angles O1-Re1-O4 [124.9(2)°] and O2-Re2-O3 [123.1(2)°] are significantly splayed due to a steric interaction. While O4–Re1–Re2 110.8(2)° and O3–Re2–Re1 112.5(2)° are relatively normal, they contrast with O1-Re1-Re2 [92.8(2)°] and O2-Re2-Re1 [93.0(2)°], which cant toward more open space between the silox and oxo groups. The d(Re=Re) of 2.3593(6) Å is long compared to common Re^{II} d⁵-d⁵ ($\sigma^2 \pi^4 \delta^2 \delta^{*2}$) triple bonds and related C_2 ditungsten species.¹² The Re-oxo bond lengths of 1.690(5) and 1.729(6) Å are slightly longer than average, but most comparisons are with oxo ligands on higher valent derivatives,^{13,14} where shorter bonds are expected. Two Re-silox distances are normal [d(Re1-O1) =1.822(5), d(Re2-O2) = 1.819(5) Å, while the remaining Re1O4 [1.875(6) Å] and Re2–O3 [1.909(6) Å] linkages are quite long due to the respective *trans*-influences of the O6 and O5 oxo groups transmitted through the Re \equiv Re bond.

(silox)₂(O)Re≡Re(O)(silox)₂ **4** was remarkably inert toward simple donors (*e.g.* CO, py, alkenes), reducing agents (*e.g.* H₂, Me₃SiH), common oxidants (*e.g.* I₂, BrCH₂CH₂Br, pyO, Me₃NO, H₂CCH₂O, N₂O) and heterocumulenes (*e.g.* CS₂, PhN=C=O), and reacted with a few substrates or reagents (*e.g.* PhPH₂, Na/Hg, O₂) to give mixtures. Terminal rhenium–oxo bonds have been noted to be strong and inert in mononuclear complexes [*cf.* (MeC₂Me)₂RReO],¹⁴ yet aggregation *via* μ -oxo formation is common.¹⁵ Since **4** could have adopted a [(silox)₂Re]₂(μ -O)₂ **5** configuration without undue steric strain {*cf.* [(silox)₂W]₂(μ -CMe)₂},¹⁶ calculations were employed to assess the terminal oxo electronic structure preference.

Fig. 2 illustrates truncated extended Hückel MO diagrams for the model complex (HO)₂(O)Re≡Re(O)(OH)₂ 4', which was given the structural parameters of 4 and adjusted to be C_2 , and [(HO)₂Re]₂(μ -O)₂ 5', whose optimized geometry [*e.g.* d(ReRe) = 2.53 Å, d(Re–O_b) = 1.94 Å] was determined from density functional theory (DFT). The EHMO calculations revealed 5' to be *ca.* 4 eV less stable than the observed 4' system, with a very small HOMO–LUMO gap of *ca.* 0.5 eV. The extreme discrepancy in total energy is due to a tremendous increase of Re–O and Re–Re π* character realized in the three highest occupied orbitals of 5'. In the unbridged geometry 4', the Re≡Re bond is comprised of the usual σ- and two π-bonding orbitals,¹⁷ and while the d³ fragment MOs have a significant amount of Re–O π*-character, it is largely dissipated upon forming the

Fig. 1 Molecular view of $(silox)_2(0)Re\equiv Re(O)(silox)_2 4$. Selected (see text) interatomic distances (Å) and angles (°): Si1–O1 1.629(5), Si2–O2 1.637(5), Si3–O3 1.704(6), Si4–O4 1.728(6); O1–Re1–O5 112.4(2), O4–Re1–O5 109.8(2), O2–Re2–O6 115.9(2), O3–Re2–O6 104.6(3), O5–Re1–Re2 104.9(2), O6–Re2–Re1 106.4(2), Re1–O1–Si1 156.9(4), Re1–O4–Si4 146.7(4), Re2–O2–Si2 153.3(4), Re2–O3–Si3 149.4(4).

Fig. 2 Truncated MO diagrams for $(HO)_2(O)Re\equiv Re(O)(OH)_2$ 4' and $[(HO)_2Re]_2(\mu-O)_2$ 5', modeling $(silox)_2(O)Re\equiv Re(O)(silox)_2$ 4 and hypothetical $[(silox)_2Re]_2(\mu-O)_2$ 5, respectively.

metal-metal bond. In the μ -oxo version **5'**, dimerization of the (HO)₂ReO fragments affords a Re–Re σ -bonding (σ) orbital that is principally d_{z^2} and a Re–Re π -bonding (π) orbital based on d_{xy} , but both have significant Re–O π^* character, and the latter is rendered virtually non-bonding relative to the fragment MOs. Another Re–Re π -bonding orbital derived from d_{xz} contains so much Re–O π^* character that it is destabilized relative to a Re–Re π^* orbital that is populated instead. The net $\sigma^2 \pi^2 \pi^{*2}$ ordering describes a single Re–Re bond, and an assessment of the core orbitals (not shown) indicates that the Re–O antibonding π -interactions are not compensated enough by the two additional Re–O σ -interactions. Interestingly, the calculated minimum energy configuration of **4'** does not have a classical ethane-like geometry,¹⁷ but optimizes with an HO–Re–Re angle near 90°, as in the crystal structure of **4**.

The cylindrical symmetry accorded the terminal oxos in **4** permits four significant π -bonds, whereas disruption of virtually all Re–O π -bonding in the bridged form is poorly balanced by additional σ -interactions; the terminal oxo structural preference of **4** is electronic in character. Thermodynamic preferences of [(EtC₂Et)₂(O)Re]₂ over [(EtC₂Et)₂Re](μ -O)(μ -EtC₂Et)[Re(O)(EtC₂Et)],¹⁸ and (RO)₂('BuC=)Re = Re(=C-'Bu)(OR)₂¹⁹ over μ -alkylidyne bridged forms, may be similarly ascribed. In compounds that lack additional terminal π -donors, or contain two less electrons {*e.g.* d²-d² [(Me₃SiCH₂)₂Re]₂(μ -CSiMe₃)₂},²⁰ the bridged form of multiple metal–ligand bond may prevail.¹⁵

Financial support from the National Science Foundation (CHE-9528914), Cornell University and The English-Speaking Union, for a Lindemann Trust Fellowship (R. E. D.), is gratefully acknowledged. We thank Ana-Rita Mayol and Emil Lobkovsky for experimental assistance, and Chase A. Munson for the initial calculations.

Notes and references

Selected analytical data: **1** (C_6D_6), $\delta_H \delta 1.58$ (12 H, br q, CH₂), 7.00 (18 H, br t, CH₃), 8.07 (27 H, s, 'Bu); $\delta_C \delta 10.31$ (CH₂), 48.78 (CMe₃), 112.81 [C(CH₃)₃], 121.44 (CH₃). Anal. Calc. for $C_{24}H_{57}OSiP_2Cl_2Re$, C, 40.7, H, 8.1. Found: C, 40.8, H, 8.3%. **2** (C_6D_6), $\delta_H 6.70$ (br, 'Bu); $\delta_C 44.64$ [C(CH₃)₃], 167.30 (CMe₃); UV–VIS (CH₂Cl₂) 700 nm ($\varepsilon = 50$ dm³ mol⁻¹ cm⁻¹), 577 [170, $e''(^{3}A_2') \rightarrow e'(^{3}A_2'')$], 345 (3100), 283 (5900). Anal. Calc. for $C_{36}H_{81}O_3Si_3Cl_2Re$, C, 47.9, H, 9.0. Found C, 47.6, H, 8.6%. **3** (C_6D_6), $\delta_H 1.12$ (27 H, s, 'Bu), 1.17 (54 H, s, 'Bu); $\delta_C 22.51$ (CMe₃), 23.56 (2xCMe₃), 30.37 [C(CH₃)₃], 30.62 [2xC(CH₃)₃]. Anal. Calc. for $C_{36}H_{81}O_3$ -Si₃Cl₆Re₃: C, 30.5; H, 5.7. Found: C, 31.1; H, 5.9%. **4** (C_6D_6), $\delta_H 1.26$ (s, 'Bu), 1.30 (s, 'Bu); $\delta_C 24.20$ (CMe₃), 24.86 (CMe₃), 30.74 [C(CH₃)₃], 30.79 [C(CH₃)₃]. Anal. Calc. for $C_{48}H_{108}O_6Si_4Re_2$: C, 46.6; H, 9.1. Found: C, 45.5, H, 8.6%.

Crystallographic data: **4**. 4 THF, $C_{64}H_{140}O_{10}Re_2Si_4$, M = 1554.58, $D_c = 1.500 \text{ g cm}^{-3}$, $\mu = 3.66 \text{ mm}^{-1}$; orthorhombic, space group *Pca2*₁, a = 22.927(5), b = 12.552(3), c = 23.922(5) Å, U = 6844(2) Å³, Z = 4, T = 22.927(5), h = 12.552(3), h =

2592 Chem. Commun., 1998, 2591–2592

293(2) K, 2923 independent reflections, $R_1 = 0.1024$, GOF(F^2) = 1.085% CCDC 182/1073.

References

- 1 P. T. Wolczanski, Polyhedron, 1995, 14, 3335.
- 2 K. J. Covert, D. R. Neithamer, M. C. Zonnevylle, R. E. LaPointe, C. P. Schaller and P. T. Wolczanski, *Inorg. Chem.* 1991, **30**, 2494; K. J. Covert, P. T. Wolczanski, S. A. Hill, S.A. and P. J. Krusic, *Inorg. Chem.*; 1992, **31**, 66; K. J. Covert, A.-R. Mayol and P. T. Wolczanski, *Inorg. Chim. Acta*, 1997, **263**, 263.
- J. B. Bonanno, T. P. Henry, D. R. Neithamer, P. T. Wolczanski and E. B. Lobkovsky, *J. Am. Chem. Soc.*, 1996, **118**, 5132; J. B. Bonanno, P. T. Wolczanski and E. B. Lobkovsky, *J. Am. Chem. Soc.*, 1994, **116**, 11159; D. R. Neithamer, R. E. LaPointe, R. A. Wheeler, D. S. Richeson, G. D. Van Duyne and P. T. Wolczanski, *J. Am. Chem. Soc.* 1989, **111**, 9056-9072.
- 4 D. F. Eppley, P. T. Wolczanski and G. D. Van Duyne, Angew. Chem., Int. Ed. Engl., 1991, 30, 584.
- 5 R. E. LaPointe and P. T. Wolczanski, J. Am. Chem. Soc. 1986, 108, 3535; R. L. Miller, R. Toreki, R. E. LaPointe, P. T. Wolczanski, G. D. Van Duyne and D. C. Roe, J. Am. Chem. Soc., 1993, 115, 5570.
- 6 R. L. Miller, K. A. Lawler, J. L. Bennett and P. T. Wolczanski, *Inorg. Chem.* 1996, **35**, 3242; R. L. Miller, P. T. Wolczanski and A. L. Rheingold, *J. Am. Chem. Soc.*, 1993, **115**, 10422.
- 7 M. Weidenbruck, C. Pierrard and H. Pesel, Z. Naturforsch., Teil B, 1978, 33, 1468.
- 8 G. W. Parshall, Inorg. Synth., 1965, 17, 111.
- 9 I. M. Gardener, M. A. Bruck, P. A. Wexler and D. E. Wigley, *Inorg. Chem.* 1989, 28, 3688.
- 10 E. A. Allen, N. P. Johnson, D. T. Resevear and W. Wilkinson, J. Chem. Soc. A, 1969, 788.
- 11 J. Chatt, J. D. Garforth, N. P. Johnson and G. A. Rowe, J. Chem. Soc., 1964, 601; J. Chatt and G. A. Rowe, J. Chem. Soc. 1962, 4019.
- 12 F. A. Cotton and R. A. Walton, *Multiple Bonds Between Metal Atoms*, Oxford University Press, New York, 2nd edn., 1993.
- 13 W. A. Nugent and J. M. Mayer, *Metal–Ligand Multiple Bonds*, Wiley Interscience, New York, 1988.
- 14 E. Spaltenstein, T. K. G. Erikson, S. C. Critchlow and J. M. Mayer, J. Am. Chem. Soc., 1989, 111, 617.
- 15 D. M. Hoffman, Comprehensive Organometallic Chemistry, ed. E. W. Abel, F. G. R. Stone and G. Wilkinson, Pergamon, Exeter, UK, 1995, vol. 6, pp 231–235.; K. P. Gable, F. A. Zhuravlev and A. F. T. Yokochi, Chem. Commun., 1998, 799 and references therein.
- 16 R. L. Miller, Ph.D. Thesis, Cornell University, 1993.
- A. Dedieu, T. A. Albright and R. Hoffmann, J. Am. Chem. Soc., 1979, 111, 3141; M. H. Chisholm, D. L. Clark, M. J. Hampden-Smith and D. M. Hoffman, Angew Chem. Int. Ed. Engl., 1989, 28, 432.
- 18 E. Spaltenstein and J. M. Mayer, J. Am. Chem. Soc., 1991, 113, 7744.
- 19 R. Toreki, R. R. Schrock and M. G. Vale, J. Am. Chem. Soc. 1991, 113, 3610.
- 20 M. Bochmann, G. Wilkinson, A. M. R. Galas, M. B. Hursthouse and K. M. A. Malik, J. Chem. Soc., Dalton Trans., 1980, 1797.

Communication 8/08306A