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A formal synthesis of both atropenantiomers of desertorin C
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Asymmetric synthesis of both enantiomers of 1,1A-(2A,4-
dihydroxy-6,6A-dimethoxy-2,4A-dimethylbiphenyl-3,3A-diyl)-
bisethanone allows the formal synthesis of both enantiomers
of   4,4A,7,7A-tetramethoxy-5,5A-dimethyl-6,8A- bicoumarin
(desertorin C).

The desertorins A 1, B 2 and C 3 are a family of unsymmetrical
coumarin dimers of fungal origin which are optically active on
account of restricted rotation about their stereogenic axes.1

Methylation of both desertorins A and B provides desertorin C
which on base hydrolysis yields the diketone 5.1 We have
previously synthesized desertorin C in racemic form using the
(±)-diketone 5 as the key intermediate.2 Subsequently the
absolute configuration of the desertorins was established as R
by an X-ray crystal structure determination of the bis-
bromobenzoate 4.3 We now describe a synthetic approach to
both enantiomers of desertorin C.

O-Methylorcinol 6 (Scheme 1) was protected as its tetra-
hydropyranyl ether 7 which on lithiation and subsequent
treatment with 1,2-dibromotetrafluoroethane and acidic work-
up gave the bromophenol 8,4 mp 71–72 °C, in 60% overall
yield. Mitsunobu reaction (Scheme 2) between this bromo-

Scheme 2 Reagents and conditions: i, TBDMSCl, imidazole, DMF, 25 °C, 15 h, 76%; ii, 8, Bu3P, DEAD, THF, 25 °C, 24 h; iii, Bu4NF, THF, 25 °C, 1 h;
iv, 13, Bu3P, DEAD, THF, 25 °C, 48 h; v, BuLi, Ar,THF, 278 °C, 1 h; vi, CuCN, TMEDA, 278 to 240 °C, 15 min; vii, O2, 278 °C, 3 h; viii, H2, Pd/C,
EtAc, 94%; ix, TsCl, C5H5N, 0 °C, 7 h, 78%; x, NaI, Me2CO, reflux, 5 h, 91%; xi, Zn, EtOH, reflux, 1 h, 80%; xii, PriBr, K2CO3, DMF, 45 °C, 48 h, 68%;
xiii, TFAA, AcOH, CH2Cl2, 25 °C, 7h, 69%; xiv, BCl3, CH2Cl2, 0 °C, 2 h; xv, MeI, K2CO3, DMF, 40 °C, 15 h.

Scheme 1 Reagents and conditions: i, TsOH, dihydropyran, THF, 0 °C, 20
h; ii, BuLi, Ar, THF, TMEDA, 25 °C, 4 h; iii, BrCF2CF2Br, 25 °C, 1 h; iv,
H+, H2O.
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phenol 8 and the mono(tert-butyldimethylsilyl)ether 10 of
1,4-di-O-benzyl-L-threitol 95 gave the ether 11 (68%) which on
deprotection afforded the alcohol 12 (90%). This alcohol was
caused to react in another Mitsunobu reaction with the
bromophenol 13.6 The resultant D-threitol derivative 14, mp
54–56 °C (45%), was subjected sequentially to lithiation,
copper(I) cyanide and dry oxygen after the manner of Lipschutz
et al.,7 which gave the cyclized product 15 (40%). Deprotection
was achieved by hydrogenolytic debenzylation and tosylation
of the resultant diol 16. The tosylate 17 was converted into the
iodide 18, mp 155–157 °C, which on reductive elimination with
activated zinc supplied the diol 19, mp 134–136 °C, [a]D

20227
(c 0.67, CHCl3).

In order for the intramolecular coupling 14?15 to occur the
aryloxy substituents in the intermediate higher order cyano-
cuprate7 are predicted to adopt, on account of the anomeric
effect, the gauche conformation depicted in Fig. 1. Hence the
axial configuration of the intermediate cyclic compound 15 is S
and that of the diol 19 is R. The diol appeared to be
enantiomerically pure since it was not resolved on HPLC on two
chiral columns8 nor did the 1H and 19F NMR spectra of the
derived Mosher diester show the presence of the other
enantiomer even in the presence of a lanthanide shift reagent.
The CD spectrum (MeCN) of the derived dibenzoate 21 showed
exciton splitting centred at l 226 nm with a positive first Cotton
effect (l 237 nm, De 24.3) and a negative second effect (l 215
nm, De 29.0) in keeping with the R configuration of the diol
19.9

Since O-methylorcinol 6 undergoes C-monoacetylation at
both positions ortho to the hydroxy group, the diol 19 was
isopropylated and the resultant ether 20 was acetylated with
AcOH and TFAA, which supplied an inseparable mixture of the

diketones 22 and 23. Selective dealkylation of this mixture with
BCl3 yielded the tetrol 24 (30%), mp 198–200 °C, [a]D

20 32.8
(c 0.86, Me2CO), dOH(CDCl3) 8.46, 8.54, 11.80 and 13.42, and
the triol 25 (35%), mp 120 °C decomp., [a]D

20 261.0 (c 1.05,
Me2CO), dOH(CDCl3) 8.36, 11.87 and 12.45. Methylation and
selective demethylation of the tetrol 24 gave the (S)-diketone 5
(69%), mp 147–149 °C (lit.,1 149–150 °C), [a]D

20 34.0 (c 0.94,
Me2CO),10 which had previously been obtained by basic
hydrolysis of desertorin C.1 The (R)-diketone 26 (82%), mp
145–146 °C, [a]D

20 253.0 (c 0.80, Me2CO),11 was obtained in
a similar fashion from the triol 25. Since the racemic diketone
has been converted into desertorin C this constitutes a formal
synthesis of both of the enantiomers of this metabolite.

Both the synthetic diketone 5 and the degradation product 5
appear to have undergone some racemisation, the former
presumably at the tetrol stage, and the latter under the harsh
conditions of the hydrolysis.
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Fig. 1 Newman projection along the 2,3-bond of the D-threitol 14 in the
conformation for the coupling reaction leading to 15.
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