Evidence for a ruthenium dihydride species as the active catalyst in the RuCl₂(PPh₃)-catalyzed hydrogen transfer reaction in the presence of base

Attila Aranyos,^a Gábor Csjernyik,^a Kálmán J. Szabó^{*b} and Jan-E. Bäckvall^{*b}

^a Department of Organic Chemistry, University of Uppsala, Box 531, SE-751 21 Uppsala, Sweden

^b Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden.

E-mail: kalman@organ.su.se; jeb@organ.su.se

Received (in Cambridge, UK) 26th November 1998, Accepted 8th January 1999

The role of the base in RuCl₂(PPh₃)₃-catalyzed hydrogen transfer reactions is to generate a highly active RuH₂(PPh₃)₃ catalyst from the dichloride *via* two consecutive alkoxide displacement- β -elimination sequences.

In 1991 we reported on a dramatic rate acceleration in the $RuCl_2(PPh_3)_3$ -catalyzed transfer-hydrogenation of ketones upon addition of a catalytic amount of base.¹ The accelerating effect of the base was in the order of 10^3 – 10^4 , and this provided a viable procedure for transfer hydrogenation. This remarkable effect was subsequently extended to other hydrogen transfer reactions,^{1b} and by using it in the reversed direction, procedures for ruthenium-catalyzed Oppenauer oxidation were developed.² Further developments of the ruthenium-catalyzed transfer hydrogenations^{3,4} into enantioselective versions have been recently realized by several groups.^{5–10}

The effect of base in the iridium-catalyzed^{10b-11} transfer hydrogenation has also been observed, but the role of base has remained unclear.¹² In our previous work on the use of RuCl₂(PPh₃)₃ **1** as a catalyst we proposed that a ruthenium alkoxide is formed with a subsequent β -elimination¹³ to give a ketone and Ru(H)Cl(PPh₃)₃ **2**. The latter was proposed to act as the active catalyst. We have now studied the mechanism of this reaction and found that formation of a ruthenium dihydride species is responsible for the dramatic rate acceleration.

The reaction of $RuCl_2(PPh_3)_3$ 1 with isopropanol in the presence of base was studied by ¹H NMR spectroscopy with the aim of detecting complexes, which are possible active catalytic intermediates in transfer hydrogenation reactions. Treatment of RuCl₂(PPh₃)₃ with isopropanol and KOH at room temperature under argon gave a doublet of a triplet at $\delta - 10.15$ ($J_{\rm PH}$ 35.2, 42.2 Hz) and a broad singlet at δ –7.07 in an integral ratio of 3:1.14 According to literature data the multiplet at δ -10.15 was assigned as $RuH_2(PPh_3)_3 3'^{15}$ and the singlet at $\delta - 7.07$ as $Ru(H_2)H_2(PPh_3)_3$.¹⁶ Thus, the mole ratio between the complexes is 6:1. To further establish the assignments, reference samples of $RuH_2(PPh_3)_4$ 3^{17} and $Ru(H_2)H_2(PPh_3)_3^{16}$ were prepared according to literature procedures. Addition of 3 to the reaction sample increased the multiplet at δ -10.15. The doublet of triplet coupling pattern and the presence of free PPh3 according to ³¹P NMR clearly indicate that in solution $RuH_2(PPh_3)_4$ 3 dissociates a phosphine to give $RuH_2(PPh_3)_3$ 3'. Also, addition of $Ru(H_2)H_2(PPh_3)_3$ to the reaction sample increased the broad singlet at δ -7.07. Furthermore, the ³P NMR of the reaction sample and the reference samples established the assignments made. It is not yet clear which role $Ru(H_2)H_2(PPh_3)_3$ plays in the catalytic reaction but it is known^{15a,18} that in the presence of ketones $Ru(H_2)H_2(PPh_3)_3$ easily dissociates its H_2 ligand. This will generate the active catalyst $RuH_2(PPh_3)_3$ **3'** and also lead to some 'hydrogenleakage' in the hydrogen transfer reaction.19

The observation that a ruthenium dihydride complex is formed when $RuCl_2(PPh_3)_3$ reacts with isopropanol in the presence of base has interesting mechanistic implications for $RuCl_2(PPh_3)_3$ -catalyzed hydrogen transfer reactions. To obtain further evidence for a dihydride species as the active catalyst, we studied the catalytic hydrogen transfer between cyclopentanol and acetone employing three different catalyst sources: $RuCl_2(PPh_3)_3$ **1**, $Ru(H)Cl(PPh_3)_3$ **2**,²⁰ and $RuH_2(PPh_3)_4$ **3**¹⁷ [Fig. 1, eqn. (1)].

Fig. 1 Ruthenium-catalyzed hydrogen transfer from cyclopentanol to acetone with $RuCl_2(PPh_3)_3$ 1, $Ru(H)Cl(PPH_3)_3$ 2, or $RuH_2(PPh_3)_4$ 3 at 56 °C in the presence of K_2CO_3 . In each experiment 0.2 mol% of ruthenium catalyst was employed.

The conversion of **4** to **5** was monitored by GC. Significant differences were observed in the reaction rates for the three catalyst precursors. Thus, there were observable induction periods for the complexes **1** and **2**, with the longest induction period for **1**. For the dihydride complex **3** there was a fast initial rate, without any sign of an induction period. Catalyst **3** showed identical reactivity also in the absence of base, whereas **1** and **2** were inactive under these conditions. The longer induction period for **1** compared to **2** is explained by eqns. (2) and (3). The two chlorides in **1** are removed in two consecutive alkoxide displacement– β -elimination sequences whereas for **2** only one such sequence is requried [eqn. (3)].^{21,22}

The mechanism for the ruthenium-catalyzed hydrogen transfer is depicted in Scheme 1. It is interesting that once the ruthenium dihydride has been generated the base is no longer required, which was confirmed by experiments (*vide supra*).

Additional support for a dihydride as the active catalyst was obtained from stoichiometric reactions of **2** and **3'** with acetone in toluene- d_8 [eqns. (4) and (5)] monitored by ¹H NMR. Thus, it was found that monohydride **2** did not react with acetone at

Scheme 1 Mechanism of RuCl₂(PPh₃)₃-catalyzed hydrogen transfer.

56 °C, whereas the dihydride **3'** (generated from **3** *in situ*) rapidly ($t_{\pm} \approx 5$ min) reduced acetone to isopropanol. This rules out **2** as the active catalyst. In the catalytic system (Scheme 1), where there is a large excess of alcohol, it is likely that proton transfer from isopropanol to the alkoxy groups in **6** takes place. This leads to an exchange of alkoxy groups on ruthenium to give **7**. In eqn. (5) there is no excess of alcohol and a formal reductive elimination to give a Ru(0) species would predominate.

$$\frac{Ru(H)Cl(PPh_3)_3}{2} + \underbrace{\int_{0}^{0} \frac{toluene \cdot d_8}{56 \, ^{\circ}C}}_{56 \, ^{\circ}C} \text{ no reaction } (4)$$

Apparently, exchange of the chloride ligand of **2** to a hydride **3'** leads to dramatic changes in the electronic structure of the ruthenium catalyst, which facilitates the hydride addition to a ketone. Preliminary theoretical calculations on the formal-dehyde complex **8** and the corresponding alkoxy adduct **9** for ruthenium monohydride (X = Cl) and ruthenium dihydride (X = H) were performed at the DFT/DZ + P level of theory.²³ The calculations show that for the monohydride **8** (X = Cl) the reaction is thermodynamically unfavored by 5.3 kcal mol⁻¹ (Fig. 2). This implies that the alkoxy chloride **9** (X = Cl) is unstable and will undergo facile β -elimination to give the keto compound and the hydride.²⁴ In the case of the dihydride complex the equilibrium is slightly shifted toward adduct **9**, the free energy difference being about 1 kcal mol⁻¹.

Fig. 2 Energies (kcal mol⁻¹) of structures 8 and 9 for dihydride (X = H) and monohydride (X = Cl).

In conclusion, the experimental results indicate that ruthenium dihydride $RuH_2(PPh_3)_3$ is the active catalyst in baseaccelerated $RuCl_2(PPh_3)_3$ -catalyzed hydrogen transfer reactions.²⁵ Furthermore, it is shown that the monohydride **2** is not the active catalyst. Theoretical calculations support the observation that a chlororuthenium monohydride is unreactive towards hydride addition to a keto group.

This work was supported by the Swedish Natural Science Research Council and the Parallelldatorcentrum, Stockholm.

Notes and references

 (a) J. E. Bäckvall, R. L. Chowdhury and U. Karlsson, J. Chem. Soc., Chem. Commun., 1991, 473; (b) G.-Z. Wang and J. E. Bäckvall, J. Chem. Soc., Chem. Commun., 1992, 980.

- 2 G.-Z. Wang and J. E. Bäckvall, J. Chem. Soc., Chem. Commun., 1992, 337; M. L. S. Almeida, M. Beller, G.-Z. Wang and J. E. Bäckvall, Chem. Eur. J., 1996, 2, 1533.
- 3 For other recent advancements on ruthenium-catalyzed transfer hydrogenations see: (a) H. Yang, M. Alvarez, N. Lugan and R. Mathieu, *J. Chem. Soc., Chem. Commun.*, 1995, 1721; (b) E. Mizushima, M. Yamaguchi and T. Yamagishi, *Chem. Lett.*, 1997, 237.
- 4 For reviews on hydrogen transfer reactions see: R. A. W. Johnstone, A. H. Wilby and I. D. Entwistle, *Chem. Rev.*, 1985, **85**, 129; P. A. Chaloner, M. A. Esterulas, F. Joo and L. A. Oro, *Homogeneous Hydrogenation*, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1994, pp. 87–118; G. Zassinovich, G. Mestroni and S. Gladiali, *Chem. Rev.*, 1992, **92**, 1051; J. E. Bäckvall, R. L. Chowdhury, U. Karlsson and G.-Z. Wang, in *Perspective in Coordination Chemistry*, ed. A. F. Williams, C. Floriani and A. E. Merbach, *Verlag Helvetica Chimica Acta*, Basel, 1992, pp. 463–486.
- J. P. Genêt, V. Ratovelomanana-Vidal and C. Pinel, Synlett, 1993, 478;
 P. Krasik and H. Alper, Tetrahedron, 1994, 50, 4347.
- 6 S. Hashiguchi, A. Fujii, J. Takehera, T. Ikariya and R. Noyori, J. Am. Chem. Soc., 1995, **117**, 7562; R. Noyori and S. Hashiguchi, Acc. Chem. Res., 1997, **30**, 97.
- 7 T. Langer and G. Helmchen, Tetrahedron Lett., 1996, 37, 1381.
- 8 T. Sammakia and E. L. Stangeland, J. Org. Chem., 1997, 62, 6104.
- 9 (a) M. Palmer, T. Walsgrove and M. Wills, J. Org. Chem., 1997, 62, 5226; (b) K. J. Haack, S. Hashiguchi, A. Fujii, J. Takehera, T. Ikariya and R. Noyori, Angew. Chem., Int. Ed. Engl., 1997, 36, 285; (c) F. Touchard, P. Gamez, F. Fache and M. Lemaire, Tetrahedron Lett., 1997, 38, 2275; (d) D. A. Alonso, D. Guijarro, P. Pinho, O. Temme and P. G. Andersson, J. Org. Chem., 1998, 63, 2749 and references therein.
- For other metal systems see: (a) D. Müller, G. Umbricht, B. Weber and A. Pfaltz, *Helv. Chim. Acta.*, 1991, **74**, 232; (b) S. Gladiali, G. Chelucci, G. Chessa, G. Delogu and F. Soccolini, *J. Organomet. Chem.*, 1987, **327**, C15; (c) P. Kvintovics, B. R. James and B. Heil, *J. Chem. Soc.*, *Chem. Commun.*, 1986, 1810.
- 11 R. Uson, L. A. Oro, R. Sariego and M. A. Esteruelas, J. Organomet. Chem., 1981, 214, 399.
- 12 In a recent publication Noyori^{9b} discussed the role of base in rutheniumcatalyzed hydrogen transfer and proposed a monohydride amide complex as the reactive intermediate (catalyst) in his system.
- 13 For related β-hydride elimination from iridium alkoxide complexes see: O. Blum and D. Milstein, J. Am. Chem. Soc., 1995, 117, 4582.
- 14 The ¹H NMR spectrum was recorded in benzene- d_6 after removal of isopropanol.
- 15 (a) D. E. Linn and J. Halpern, J. Am. Chem. Soc., 1987, 109, 2969; (b) R. U. Kirss, T. C. Eisenschmid and R. Eisenberg, J. Am. Chem. Soc., 1988, 110, 8564.
- 16 L. S. Van Der Sluys, G. J. Kubas and K. G. Caulton, *Organometallics*, 1991, **10**, 1033.
- 17 R. O. Harris, N. K. Hota, L. Sadavoy and J. M. C. Yuen, J. Organomet. Chem., 1968, 54, 259; J. J. Levison and S. D. Robinson, J. Chem. Soc. A, 1970, 2947.
- 18 Y. Lin and Y. Zhou, J. Organomet. Chem., 1990, 381, 135.
- 19 D. J. Cole-Hamilton and D. Morton, J. Chem. Soc., Chem. Commun., 1988, 1154; D. Morton, D. J. Cole-Hamilton, I. D. Utuk, M. Paneque-Sosa and M. Lopez-Poveda, J. Chem. Soc., Dalton Trans., 1989, 489.
- 20 (a) P. S. Hallman, B. R. McGarvey and G. Wilkinson, J. Chem. Soc. A, 1968, 3143; (b) B. N. Chaudret, D. J. Cole-Hamilton, R. S. Nohr and G. Wilkinson, J. Chem. Soc., Dalton Trans., 1977, 1546.
- 21 The conversion of Ru–Cl into Ru–H on reaction of [RuCl₂(COD)]_x with base and a secondary alcohol to give dihydride complexes was recently reported: S. P. Nolan, T. R. Belderrain and R. H. Grubbs, *Organometallics*, 1997, **16**, 5569; see also ref. 20*b*.
- 22 It has been proposed that a dihydride is formed from RuHCl(CO)-(PiPr₃)₂ (analogous to 2) and isopropanol in the presence of KOH: M. A. Esteruelas, E. Sola, L. A. Oro, H. Werner and U. Meyer, *J. Mol. Catal.*, 1988, 45, 1.
- 23 (a) The theoretical calculations were carried out by using a Becke-type^{23b} three parameter hybrid-functional (B3PW91) in connection with the LANL2DZ basis set augmented with d-polarization functions on the C, O and P atoms and p-polarization functions on Ru-H and CH₂O atoms; (b) A. D. Becke, J. Chem. Phys., 1993, **98**, 5648.
- 24 For related calculations (Hartree–Fock) on **8** (X = Cl) and **9** (X = Cl) see: H. Itagaki, N. Koga, K. Morokuma and Y. Saito, *Organometallics*, 1993, **12**, 1648.
- 25 Recently, Mizushima *et al.*^{3b} reported results, which suggest that ruthenium dihydride complex **3**, is the active catalyst in hydrogen transfer reactions; see also ref. 18.