Encapsulation of WC within 2H-WS₂ inorganic fullerene-like cages

Aude Rothschild,^{*a*} Jeremy Sloan,^{**b,c*} Andrew P. E. York,^{*b*} Malcolm L. H. Green,^{*b*} John L. Hutchison^{*c*} and Reshef Tenne^{*a*}

^a Department of Materials and Interfaces, Weizmann Institute, Rehovot, 76100, Israel

^b Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, UK OX1 3QR. E-mail: Jeremy.Sloan@chem.oxford.ac.uk

^c Department of Materials, University of Oxford, Parks Road, Oxford, UK OX1 3PH

Received (in Bristol, UK) 11th November 1998, Accepted 12th January 1999

The preparation of WC encapsulated within 2H-WS₂ inorganic fullerene-like (IF) cages by sulfidisation is described; the encapsulates were prepared from both high surface area (high S_g) and low surface area (low S_g) WC precursors; for low S_g WC, partial conversion of the carbide to the sulfide only was achieved with 2–20 IF layers obtained around carbide particles, resulting in WC/2H-WS₂ composites; the amount of conversion obtained in the case of the high S_g WC depended on the method of preparation of the precursor; total conversion to 2H-WS₂ was obtained from a precursor obtained by carburisation of small WO₃ particles, while only partial conversion was obtained in the instance of high S_g WC prepared from ball-milled low S_g WC.

Inorganic fullerene-related structures (IFs) of the form 2H-MX2 with M = W, Mo and X = S, Se can be prepared by a variety of routes including gas-solid¹⁻⁴ and vapour phase⁵ reaction between a sulfidising agent and a metal oxide, by STM induction from amorphous MoS3 films6 and also by chemicaltransport reactions.⁷ Such materials owe their fullerene-like properties to the fact that they can incorporate non-six membered moieties that result in the formation of both curved and closed multiple layered structures similar to those formed by graphitic carbon.8 These materials have found uses in tribological applications⁹ and also in nanoscale electronic devices.¹⁰ We describe here the encapsulation of 2H-WS₂ IF material around particles of the corresponding monocarbide. This result is novel as WC is a much denser and more metallic material than the oxide or sulfide precursors previously used to synthesize IFs.

The low Sg WC used in these experiments exhibited average particle sizes of 0.3-2.5 µm and was obtained from Alfa Chemicals (99.5%). The high S_g WC was prepared by two methods. First, WC (α -form) with a surface area of 40 m² g⁻¹ and particle diameters in the range 200-2000 Å was prepared by reacting WO₃ with a mixture of 20% CH₄-H₂ (100 ml min⁻¹), ramping the temperature from 20 to 750 °C at the rate of 1 °C $\min^{-1.11}$ The carburisation of this precursor was verified in the bulk by X-ray powder diffraction (XRD) using a Philips 1729 diffractometer equipped with Cu-K α_1 radiation operated at 40 kV and 30 mA. The second high S_g sample was prepared by grinding the commercially available low S_g WC in a ball milling apparatus for 48 h. This technique also produced a precursor with particle sizes in the range 200-2000 Å. All of the sulfidisations were carried out in a standard flow reactor at a temperature of 820 °C using a mixture of forming gas (5% H_{2} -95% N₂) at 110 ml min⁻¹ and H₂S at a flow rate of 4 ml min⁻¹. All precursors and their resulting encapsulates were characterised by electron diffraction (ED) and high resolution transmission electron microscopy (HRTEM).

In general, IFs prepared from the low S_g (*i.e.* large particle size) WC precursor materials were completely covered by the encapsulating 2H-WS₂ network which varied from between 2 and 20 2H-WS₂ layers per encapsulate. The size of the resulting encapsulates were found to be in the same range as the precursor particles (see above), although some slight expansion in size

Fig. 1 (a) Schematic depictions of the hexagonal $P\overline{6}m2$ WC and $P6_3/mmc$ 2H-WS₂ structures showing the differences in *c vs.* stacking. (b) HRTEM micrograph showing 2H-WS₂ encapsulated low S_g WC particle. A small asperity in the original precursor particle has led to the formation of a small nanotube (**N**) on the surface of the encapsulate (scale bar ≈ 140 Å).

had probably occurred as a result of the conversion from the relatively dense carbide to the much bulkier sulfide [Fig. 1(a)]. For these relatively large encapsulates, there was no obvious crystallographic relationship between the hexagonal $P\overline{6}m2$ WC structure [Fig. 1(a)] and the encapsulating $P6_3/mmc$ 2H-WS₂ network [Fig. 1(a)]. In Fig. 1(b), for example, is shown a large carbide encapsulate (denoted WC) coated with a non-uniform 2H-WS₂ 'skin', the external form of which was determined by the adventitious morphology of the precursor rather than by the encapsulate microstructure. On the surface of the encapsulate in Fig. $\hat{1}(b)$, a small 2H-WS₂ nanotube (denoted N) has formed on the surface of the encapsulate that presumably originated from an asperity occurring on the surface of the unreacted WC precursor. A further point is that, regardless of the length of the sulfidisation step, the 2H-WS₂ material did not penetrate beyond a depth of ca. 100 Å into the WC encapsulates, except where assisted by surface irregularities of the type giving rise to the prominent feature in Fig. 1(b).

In the instance of encapsulates formed from the high S_g WC originating from carburised WO₃, near complete conversion to 2H-WS₂ IF structures was achieved. In the example shown in Fig. 2(a), a completely reacted and ellipsoidal 2H-WS₂ structure (overlapping with other IF material) is visible. A 'C'-shaped shard of IF material (denoted **S**) is also visible in the lower left region of the micrograph. Even in structures originating from relatively larger precursor particles than those giving rise to the structures in Fig. 2(a), fully reacted IFs were generally obtained.

Fig. 2 (a) HRTEM micrograph showing a 2H-WS₂ IF nanoparticle originating from a high S_g precursor formed by carburisation of small WO₃ particles. A small C-shaped shard (S) of IF material is visible in the lower left of the micrograph (scale bar \approx 75 Å). (b) 2H-WS₂ IF encapsulated high S_g particle formed from a ball milled WC precursor (scale bar \approx 50 Å).

This total conversion can be explained in terms of fairly high residual oxygen content present in the carburised precursor, which may be either present in the main bulk of the WC particles as oxycarbide or on the surfaces of the carbide particles as an oxidised passivated layer.

The main difference between IF materials grown from the precursor originating from the carburised WO₃ particles and the ball-milled WC precursor is that the latter product still contained unreacted carbide. Furthermore, as with encapsulates formed from the low S_g (*i.e.* large particle size) WC precursor, the number of encapsulating shells formed around the encapsulate was limited to 2-20 regardless of the length of the sulfidisation step. In Fig. 2(b), we see a small carbide encapsulate formed from a ball milled WC particle encased in a 2H-WS₂ IF 'shell' of variable thickness up to 10 layers. Note that in the upper right region of the micrograph, a small break in the coverage is visible (arrowed) but the 2H-WS₂ coverage of most of the observed encapsulates was generally found to be complete. These smaller encapsulates yielded information with respect to the growth mechanism of the encapsulating sulfide material from the carbide. In Fig. 3(a) we see a fast Fourier transform (FFT) calculated from the WC/2H-WS₂ interface obtained from the region indicated by the superimposed square in Fig. 2(b). The main calculated reflections in the FFT can be indexed according to an [0110] projection of WC. Superimposed upon the pattern, a blurred reflection corresponding to the (0002) planes of encapsulating 2H-WS₂ is visible. Note that this reflection is aligned along the [0001] direction with respect to the carbide. In Fig. 3(b) the microstructure of the carbide (denoted WC) in relation to the encapsulating sulfide (denoted 2H-WS₂) is shown. A small disordered region of carbide (denoted **DS**) is visible at the lower middle of the micrograph caused either by mechanical deformation of the carbide during the ball-milling process or by stacking faults present in the

Fig. 3 (a) Calculated ED pattern, obtained from a FFT of the indicated region in Fig. 2(b) corresponding to the WC/2H-WS₂ interface. The 0002 reflections of the sulfide are arranged along [0001] with respect to the carbide. (b) HRTEM micrograph showing the WC/2H-WS₂ interface. A distorted region (**DS**) is visible in the carbide microstructure (scale bar \approx 35 Å). (c) Enlargement of the WC/2H-WS₂ interface showing intergrowth between two layers of the distorted carbide structure (**WC**) and one layer of the sulfide (**2H**; scale bar \approx 10 Å).

original material. In a further enlargement [Fig. 3(c)], we see that two distorted layers of the carbide (denoted **WC**) intergrow with one layer (denoted **2H**) of the sulfide. This type of growth may be important in terms of initiating the propagation of the 2H-WS₂ encapsulating material. However, we see from the lower magnification micrographs of both the low S_g and high S_g WC encapsulates [*i.e.* Fig. 1(b) and 2(b)] that the adventitious morphology of the precursor plays a more important rôle in terms of determining the overall shape of the obtained encapsulates. This is in accordance with the previous observations for WO_{3-x} oxides encapsulated within 2H-WS₂ IF materials.¹²

The consequence of encapsulation of WC inside 2H-WS₂ IF shells with respect to the composite physical properties will be to enhance considerably the structural rigidity of the resulting 2H-WS₂/WC encapsulates, which may enhance their performance in tribological applications. This would be an interesting result as WC is one of the hardest known materials. Furthermore, the inclusion of the more metallic metal carbide within the sulfide should also enhance the conductive properties of the resulting composite material.

The authors are indebted to the UK–Israel Science and Technology program which is governed jointly by the British Council and the Israel Ministry of Science. A. R. is indebted to the French Ministry of Foreign Affairs (Lavoisier program) for additional financial support.

Notes and references

- R. Tenne, L. Margulis, M. Genut and G. Hodes, *Nature*, 1993, 360, 444.
- 2 L. Margulis, G. Salitra, R. Tenne and M. Talianker, *Nature*, 1993, **365**, 113.
- 3 Y. Feldman, G.L. Frey, M. Homyonfer, V. Lyakhovitskaya, L. Margulis, H. Cohen, G. Hodes, J. L. Hutchison and R. Tenne, *J. Am. Chem. Soc.*, 1996, **118**, 5362.
- 4 T. Tsirlina, Y. Feldman, M. Homyonfer, J. Sloan, J. L. Hutchison and R. Tenne, *Fullerene Sci. Technol.*, 1998, 6, 157.
- 5 Y. Feldman, E. Wasserman, D. J. Srolovitz and R. Tenne, *Science*, 1995, 267, 222.
- 6 M. Homyonfer, Y. Mastai, M. Hershfinkel, V. Volterra, J. L. Hutchison and R. Tenne, J. Am. Chem. Soc., 1996, 188, 7804.
- 7 M. Remškar, Z. Škraba, M. Regula, C. Ballif, R. Sanjinés and F. Lévy, Adv. Mater., 1998, 10, 246.
- 8 S. Iijima, Nature, 1991, 354, 56.
- 9 L. Rapoport, Y. Bilik, Y. Feldman, M. Homyonfer, S. R. Cohen and R. Tenne, *Nature*, 1997, **387**, 791.
- 10 M. Homyonfer, B. Alperson, Y. Rosenberg, L. Sapir, S. R. Cohen, G. Hodes and R. Tenne, J. Am. Chem. Soc., 1997, 119, 2693.
- 11 A. P. E. York, J. B. Claridge, A. J. Brungs, S. C. Tsang and M. L. H. Green, *Stud. Surf. Sci. Catal.*, 1997, **110**, 711.
- 12 J. Sloan, J. L. Hutchison, R. Tenne, Y. Feldman, T. Tsirlina and M. Homyonfer, J. Solid State Chem., in press.

Communication 8/09273G