Methyl exchange on silicon during the addition of methylmagnesium iodide to a cyanohydrin *O*-silyl ether

Cécile Arbez-Gindre, Valérie Berl and Jean-Pierre Lepoittevin*

Laboratoire de Dermatochimie, Université Louis Pasteur, Clinique Dermatologique, CHU, F-67091 Strasbourg, France. E-mail: jplepoit@chimie.u-strasbg.fr

Received (in Cambridge, UK) 16th December 1998, Accepted 20th January 1999

Reaction of [13 C]methylmagnesium iodide (99 atom% 13 C) with cyanohydrin *O*-trimethylsilyl ether 1, followed by acidic hydrolysis, led to the formation of a methyl ketone derivative 2a that was only partially labelled (60 ± 5 atom% 13 C); this loss of labelling occurred through a methyl exchange reaction on silicon as shown by the presence on intermediate 2b of [13 C]methyl groups on silicon (30 atom% 13 C).

The addition of Grignard reagents to cyanohydrin O-silyl ethers is a highly efficient method for synthesising α -hydroxy ketones^{1,2} or β -amino alcohols^{1,3} (Scheme 1). This reaction which has found numerous applications in the synthesis of natural products,⁴⁻⁶ provides easy access to type 2 α -hydroxy ketones from cyanohydrin O-trimethylsilyl ether 1.

Scheme 1

During studies of the allergenic potential of corticosteroids^{7,8} and their interactions with skin proteins by ^{13}C NMR spectroscopy, we were interested in the synthesis of the [21- ^{13}C] intermediate **2**. Addition of 2.2 equiv. of [^{13}C]methylmagnesium iodide (99 atom% ^{13}C) to **1** in toluene–Et₂O (4:1) at 60 °C for 26 h, followed by acidic hydrolysis, gave a mixture of **2a** and **2b** (Scheme 2) with a combined yield of 79%. However, ^{1}H NMR analysis of these products gave surprising results. In addition to the expected doublet at δ 2.25 ($J_{\text{C-H}}=128$ Hz) which confirmed the formation of a [^{13}C]methyl ketone, a singlet at δ 2.25 was seen accounting for 40 \pm 5% of the ^{1}H

Scheme 2 Reagents and conditions: i, 13 CH₃MgI, Et₂O, toluene, 26 h, 55–60 °C; ii, HCl 10%, acetone, THF, 14 h, room temp.

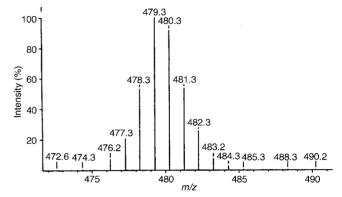


Fig. 1 Mass spectrum of compound 2b (molecular peak).

integration and due to the presence of [12 C]methyl ketone. Moreover, in addition to the expected singlet at δ 0.1, and characteristic of methyl groups on silicon (compound **2b**), we observed a doublet ($J_{\text{C-H}} = 118 \text{ Hz}$) which is consistent with the presence of [13 C]methyl groups on silicon.

This clearly indicates that the 21-methyl position was only partially labelled (60 ± 5 atom% 13 C) and that some methyl groups on silicon were also partially labelled (30 atom% 13 C). A mass spectrum of compound **2b** (electronic impact, Fig. 1) confirmed this finding and showed an almost statistical distribution of [13 C]methyl groups on the molecule.

Addition of Grignard reagents to nitriles proceeds *via* rapid nitrogen complexation, followed by a slow addition of the alkyl group, to form an intermediate imine. ^{10–12} The presence of 30 atom% ¹³C on the silyl group indicated that 0.9 equiv. of methyl had been exchanged. If this process occurred before the addition reaction on the nitrile, this would lead to a 1.3:0.9 mixture of ¹³C/¹²C on the Grignard and therefore to 60 atom% ¹³C labelling of the methyl ketone.

Thus, our finding could support the idea of a methyl exchange reaction occurring before the Grignard reagent addition on the nitrile, even if we do not know the effect of a potential complexation of methyl magnesium iodide with trimethylsilyl ether on this exchange process.

Notes and references

- 1 W. R. Jackson, H. A. Jacobs, G. S. Jayatilake, B. R. Matthews and K. G. Watson, *Aust. J. Chem.*, 1990, **43**, 2045.
- 2 J. R. Luly, C. N. Hsiao, N. BaMaung and J. J. Plattner, J. Org. Chem., 1988, 53, 6109.
- 3 W. R. Jackson, H. A. Jacobs, B. R. Matthews, G. S. Jayatilake and K. G. Watson, *Tetrahedron Lett.*, 1990, **31**, 1447.
- 4 M. Gill, M. J. Kiefer, D. A. Lally and A. Ten, Aust. J. Chem., 1990, 43, 1497.
- 5 G. Pattenden, N. A. Pegg and R. W. Kenyon, J. Chem. Soc., Perkin Trans. 1, 1991, 2363.
- 6 I. Oprean, H. Ciupe, L. Gansca and F. Hodosan, J. Prakt. Chem., 1987, 329, 283.
- 7 J. P. Lepoittevin, J. Drieghes and A. Goossens, Arch. Dermatol., 1995, 131, 31.
- 8 M. Matura, J. P. Lepoittevin, C. Arbez-Gindre and A. Goossens, Contact Dermatitis, 1998, 38, 106.

- 9 *M* calculated for C₂₆H₄₂O₂S₂Si: 478.24. 10 P. Canonne, G. B. Foscolos and G. Lemay, *Tetrahedron Lett.*, 1980, **21**, 155.
- 11 E. C. Ashby, L. C. Chao and H. M. Neumann, *J. Am. Chem. Soc.*, 1973, **95**, 4896.
- 12 F. Effenberger, B. Gutterer and J. Syed, Tetrahedron: Asymmetry, 1995, **6**, 2933.

Communication 8/09782H