The facile synthesis of 1,2,3-trisubstituted pyrroles from the reaction of chlorocarbenes with 1-azabuta-1,3-dienes

Yuri N. Romashin,^a Michael T. H. Liu*^a and Roland Bonneau^b

^a Department of Chemistry, University of Prince Edward Island, P.E.I., Canada C1A 4P3. E-mail: liu@upei.ca ^b LPCM, Laboratoire de Chimie Physique A, Université de Bordeaux 1, 33405 Talence Cedex, France

Received (in Corvallis, OR, USA) 4th December 1998, Accepted 4th January 1999

1,2,3-Trisubstituted pyrroles have been synthesized in good yield from the reaction of chlorocarbenes with 1-azabuta-1,3-dienes.

Carbenes and metal carbenoids are useful intermediates in the synthesis of nitrogen-containing heterocyclic compounds of biological importance. Most of the work has been devoted to the reactions of carbenes and metal carbenoids with azomethines that result in aziridines, pyrrolidines, oxazolidines and β lactams.^{1,2} The literature has only two examples where pyrroles appeared as the end product.^{3,4} Introducing dimethyl acetylenedicarboxylate to a reaction mixture of N-benzylideneaniline and dichlorocarbene, generated by alkaline hydrolysis of CHCl₃, results in the formation of a pyrrole derivative in low yield.3 Thermolysis of chromium carbene complexes with 1-azabuta-1,3-dienes leads to the formation of 1,2,3-trisubstituted pyrroles in good yield.⁴ However, no pyrroles could be detected in the reaction of dichlorocarbene with 1-azabuta-1,3-dienes, where dichloroaziridines were isolated in high yield.3,5 Pyrroles represent an important major class of heterocycles. Their prominence encourages the continuing evolution of new synthetic methods.⁶ Our experiments produced a facile one-step synthesis of 1,2,3-trisubstituted pyrroles based on the reaction of arylchlorocarbenes with a variety of 1-azabuta-1,3-dienes under photolytic or thermal conditions.

We propose that the reaction of singlet carbene such as arylchlorocarbene with 1-azabuta-1,3-dienes goes through an azomethine ylide³ 4 via a reaction between the vacant 2p-orbital of the carbene and the nitrogen non-bonding electron pair (Scheme 1). The formed ylide then undergoes intramolecular ring-closure to form a dihydropyrrole 5, followed by HCl elimination to produce pyrroles.

The arylchlorocarbenes 2 were generated from arylchlorodiazirines 1^7 by photolysis or thermolysis. We prepared the

- **c** Ar = p-CIC₆H₄, R¹ = Me, R² = Ph
- **d** Ar = Ph, R^1 = Bn, R^2 = Ph
- **e** Ar = p-MeC₆H₄, R¹ = Bn, R² = Ph
- **f** Ar = p-ClC₆H₄, R¹ = Bn, R² = Ph
- **g** Ar = p-MeC₆H₄, R¹ = Bn, R² = Me

Table 1 Isolated	vields for	1,2,3-trisubstituted	pyrroles 6
------------------	------------	----------------------	------------

					Yield (%)			
Product 6	Ar	\mathbb{R}^1	\mathbb{R}^2	Mp/°C	hv	Heat		
a	Ph	Me	Ph	96–96.5	50	54		
b	p-MeC ₆ H ₄	Me	Ph	95–96	51	65		
c	$p-ClC_6H_4$	Me	Ph	112-113	48	52		
d	Ph	Bn	Ph	116–117 ^a	40	50		
e	p-MeC ₆ H ₄	Bn	Ph	132-133	55	58		
f	p-ClC ₆ H ₄	Bn	Ph	147-148	50	56		
g	p-MeC ₆ H ₄	Bn	Me	viscous oil	30	40		
^a Only the mp for 6d has been reported: lit., 117–118 °C (ref. 6).								

1-azabuta-1,3-dienes **3** ($\mathbb{R}^1 = \mathbb{M}e$, $\mathbb{B}n$; $\mathbb{R}^2 = \mathbb{M}e$, $\mathbb{P}h$) from cinnamaldehyde or crotonaldehyde and methyl or benzyl amines. We purified them by distillation under reduced pressure. The chlorocarbenes **2** react rapidly with 1-azabuta-1,3-dienes **3** to presumably yield dihydropyrroles **5**. In all cases, the elimination of HCl from **5** to give pyrroles **6** is instantaneous since no trace of **5** could be found. Yields and melting points of pyrroles **6** are presented in Table 1 and their spectral data⁸ compare well with those previously reported for **6a**,d.^{2,6,9} The yields of pyrroles **6** obtained from photolysis (30–55%) and thermolysis (40–65%) are comparable.[†]

Photolyses were carried out by irradiation (350 nm) of solutions of the chlorodiazirines **1** (1 mmol) and 1-azabuta-1,3-dienes **3** (2.5 mmol) in hexane (50 ml) at 25 °C for 24 h. For the thermolysis reactions solutions of chlorodiazirines **1** (1 mmol) and the 1-azabuta-1,3-dienes **3** (2.5 mmol) were refluxed in absolute benzene (10 ml) for 3 h. After workup, the pyrroles **6** were purified by column chromatography on silica gel with hexane–Et₂O (10:1) as eluent, followed by crystallization from PrⁱOH–hexane (1:3).

M. T. H. Liu wishes to thank the NSERC of Canada for generous financial support.

Notes and references

† All compounds reported herein gave satisfactory microanalysis data.

- A. Padwa and M. D. Weingarten, *Chem. Rev.*, 1996, **96**, 223; A. Padwa and S. F. Hornbruckle, *Chem. Rev.*, 1991, **91**, 263; A. F. Khlebnikov and R. R. Kostikov, *Russ. Chem. Bull.*, 1993, **42**, 653; M. P. Doyle and D. C. Forbes, *Chem. Rev.*, 1998, **98**, 911; L. S. Hegedus, J. Montgomery, Y. Narukawa and D. S. Snustad, *J. Am. Chem. Soc.*, 1991, **113**, 5784.
- 2 E. Vedejs and J. W. Grissom, J. Am. Chem. Soc., 1988, 110, 3238.
- 3 R. R. Kostikov, A. F. Khlebnikov and V. Y. Bespalov, J. Phys. Org. Chem., 1993, 6, 83.
- 4 T. N. Danks and D. Velo-Rego, Tetrahedron Lett., 1994, 35, 9443.
- 5 R. R. Kostikov, A. F. Khlebnikov and K. A. Ogloblin, *Zh. Org. Khim.*, 1977, **13**, 1857.
- 6 B. M. Trost and E. Keinan, J. Org. Chem., 1980, 45, 2741.
- 7 W. H. Graham, J. Am. Chem. Soc., 1965, 87, 4396.
- 8 Selected data for **6a**: $\delta_{H}(60 \text{ MHz}, \text{CDCl}_3)$ 3.53 (3H, s), 6.46 (1H, d, *J* 3), 6.76 (1H, d, *J* 3), 7.1–7.5 (10H, m). For **6b**: δ_{H} (60 MHz, CDCl}3) 2.33 (3H, s), 3.47 (3H, s), 6.38 (1H, d, *J* 3), 6.72 (1H, d, *J* 3), 7.1–7.4 (9H, m). For **6c**: $\delta_{H}(60 \text{ MHz}, \text{CDCl}_3)$ 3.48 (3H, s), 6.43 (1H, d, *J* 3), 6.76 (1H, d), 70 (1H, d)), 70 (1H, d), 70 (1H, d), 70

 $\begin{array}{l} J \; 3),\; 7.1-7.5 \; (9H,\;m);\; m/z\; 267\; [M^+].\; {\rm For}\; {\bf 6d}:\; \delta_{\rm H}(300\; {\rm MHz},\; {\rm CDCl}_3)\; 5.00 \\ (2H,\; {\rm s}),\; 6.50\; (1H,\; d,\; J\; 3),\; 6.80\; (1H,\; d,\; J\; 3),\; 7.1-7.4\; (15H,\; m).\; {\rm For}\; {\bf 6e}:\; \\ \delta_{\rm H}(300\; {\rm MHz},\; {\rm CDCl}_3)\; 2.34\; (3H,\; {\rm s}),\; 5.00\; (2H,\; {\rm s}),\; 6.52\; (1H,\; d,\; J\; 3),\; 7.1-7.4\; (14H,\; m).\; {\rm For}\; {\bf 6f}:\; \\ \delta_{\rm H}(300\; {\rm MHz},\; {\rm CDCl}_3)\; 2.34\; (1H,\; {\rm d},\; J\; 3),\; 7.1-7.4\; (15H,\; {\rm d},\; J\; 3),\; 6.78\; \\ (1H,\; d,\; J\; 3),\; 7.1-7.4\; (14H,\; m).\; {\rm For}\; {\bf 6f}:\; \\ \delta_{\rm H}(300\; {\rm MHz},\; {\rm CDCl}_3\; 5.00\; (2H,\; {\rm s}),\; \\ 6.52\; (1H,\; d,\; J\; 3),\; 6.82\; (1H,\; d,\; J\; 3),\; 7.1-7.4\; (14H,\; m).\; {\rm For}\; {\bf 6g}:\; \\ \delta_{\rm H}(300\; {\rm MHz},\; {\rm CDCl}_3\; 5.00\; (2H,\; {\rm s}),\; \\ \end{array}$

MHz, CDCl₃) 2.07 (3H, s), 2.37 (3H, s), 5.00 (2H, s), 6.17 (1H, d, *J* 3), 6.67 (1H, d, *J* 3), 7.1–7.4 (9H, m).

9 I. Saito, A. Yazaki and T. Matsuura, Tetrahedron Lett., 1976, 2459.

Communication 8/09508F