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Diels–Alder reactions of dienylboron compounds with unactivated dienophiles:
an application of boron tethering for substituted cyclohexenol synthesis
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An efficient tethered intramolecular Diels–Alder reaction of
1,3-dienylboronates with various allyl and homoallyl alco-
hols under thermal conditions is described.

The use of Diels–Alder reactions is one of the most commonly
encountered strategies for the formation of six-membered rings,
particularly in natural product synthesis.1,2 The reaction has
been further augmented by using synthetic equivalents of either
the diene or dienophile.1 For instance, alkenylboron dienophiles
have been used as synthetic equivalents to enols.3–5 1,3-Die-
nylboronates are versatile synthetic equivalents for hetero-
subsituted dienes, since the allylboronate cycloadducts can be
transformed to desirable substituted cyclohexene derivatives.6
However, a major impediment to the use of 1,3-dienylboronate
dienes in Diels–Alder reactions is the need for activated
dienophile partners (e.g. N-phenylmaleimide or methylacry-
late). Narasaka has demonstrated that phenylboronic acid can be
used to create a temporary O–B–O tether between a diene and
dienophile containing free hydroxy groups.7 Inspired by
Narasaka’s work, we reasoned that tethering8–10 via a C–B–O
connection would enable the reaction of 1,3-dienylboron
compounds with dienophiles containing hydroxy groups, such
as allylic and homoallylic alcohols (vide infra). Here we report
the first examples of Diels–Alder reactions of 1,3-dienylboron
compounds with unactivated dienophiles.

Tethering of dienylboronate precursors 1 to a dienophilic
component 2 allows in situ formation of mixed boronic esters,
followed by intramolecular Diels–Alder reaction to the allyl-
boracycles 3 (Scheme 1). Oxidation of the C–B bond in the
adducts 3, with retention of stereochemistry, leads to the
formation of cyclohexenols, which are valuable precursors in
natural porduct synthesis. Overall, 1 acts as a masked
1-hydroxydiene equivalent in the Diels–Alder reaction. In
comparison to existing silicon-tethered Diels–Alder method-
ology, this approach uses the more readily synthesized
dienylboronates as precursors. The use of a C–B–O rather than
an O–B–O tether7 is important, since in most cases O–B–O
tethers are not applicable.

The dienylboronates 1 are formed via standard hydroboration
methodology from the corresponding enynes. Thus, hydro-
boration of 4 and 7 with dicyclohexylborane afforded the
corresponding dicyclohexyl(dienyl)boranes. The boron–cyclo-
hexyl bonds were then preferentially oxidized with Me3N(O) to
afford the desired dienylboronate (Table 1 and 2) without
concomitant oxidation of the boron–diene bond.6a,11 Since
dienylboronates are subject to disproportionation, they were
generally used in situ without purification. Thermal Diels–

Alder reaction was conducted in the presence of an appropriate
dienophile, in a degassed toluene solution, with 5 mol% of
2,6-di-tert-butyl-4-methylphenol (BHT) as a free radical in-
hibitor, using a sealed tube and a heating bath of the appropriate
temperature. Oxidation with Me3N(O) or basic H2O2 then
afforded racemic cyclohexene diols 5 and 6 in good yields
(Tables 1 and 2).

The constraining effects of the tether both accelerate the rate
of cycloaddition, and control the regio- and stereoselectivity of
the reaction. We have not been able to isolate cycloadducts in
those cases where the initial tethering step cannot occur. For
instance, no cycloaddition reaction was observed between
ethane-1,2-diyl dienyl boronates and cinnamyl alcohol, allyl
alcohol or methyl cinnamyl ether, even after prolonged heating
at 220 °C.

† To whom correspondence concerning the crystallographic data should be
addressed.

Scheme 1

Table 1 Tethered Diels–Alder reactions of 4

Yield
Entry Dienophile T/°C t/h (%)d Dr (5 : 6)e

a 1 equiv. HB(Cy)2, THF, 0 °C to room temp., 1 h; 2 equiv. Me3N(O), THF,
0 °C to room temp., 2 h. b [Boronate] = ca. 0.3 m, PhCH3, 5 mol% BHT.
c 5 equiv. Me3N(O), C6H6, 80 °C, 24 h or 3 equiv. NaOH/3 equiv. H2O2,
THF–H2O, 2 h. d Yields are for chromatographically purified material and
are calculated from 4. e The diastereomeric ratios (5 : 6) are based upon
NMR analysis of the crude products. f 6% of the corresponding enone was
isolated. g Only 5 was isolated along with 6% of a byproduct presumably
derived from 6.
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Although the tethered reactions are completely regiose-
lective, they occur with varying diastereoselectivity depending
on the substituents present on the dienophile. The presence of an
activating electron-withdrawing group on the dienophile results
in faster reactions (Table 1, entries 5 and 7). In comparison to
the reaction using allyl alcohol (Table 1, entry 1), reaction with
activated E-allylic alcohols favours the formation of the trans-
substituted compounds 5 (Table 1, entries 5 and 8). This is
expected, since the activating phenyl or ester groups are endo
with respect to the diene in the transition state. The use of a
longer tethering chain as exemplified by homoallyl alcohol
(Table 1, entry 4) results in longer reaction times compared to
allyl alcohol (Table 1, entry 1), but again favours the trans-
substituted adduct 5. Conversely, the presence of a gem-
dimethyl group in the tethering chain results in shorter reaction
times, because of the Thorpe–Ingold effect (Table 1, entries 3
and 6). The stereochemistry of compound 5 (Table 1, entry 5)12

and compound 6 (Table 1, entry 9)13 were confirmed by single
crystal X-ray analysis. In the latter case the dienylboronate is
delivered to the same face of the cyclohexenol ring as the
hydroxy group.

Dienylboronates derived from 7 were also used as Diels–
Alder precursors (Table 2). The yields are slightly lower in these
cases due to the greater propensity of the dienylboronate
towards polymerization. One of the enantiomers of compound 8
(Table 2, entry 1) has been used as an intermediate in the
synthesis of ent-D1-tetrahydrocannabinol.14

In summary, we have demonstrated a new dienylboronate
tethered Diels–Alder reaction, one of the few methods allowing
the use of unactivated dienophiles. The effect of the substituents
on the dienophile and the length of tether on the efficacy and
diastereoselectivity of the reaction was investigated. The ready
availability of various enynes as precursors and the synthetic
flexibility of the C–B bond in the cycloadducts is anticipated to
provide access to a variety of functionalized cyclohexene
derivatives.
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Table 2 Tethered Diels–Alder reactions of 7

Yield
Entry Dienophile T/°C t/h (%)d Dr (5 : 6)e

a 1 equiv. HB(Cy)2, THF, 0 °C to room temp., 1 h; 2 equiv. Me3N(O), THF,
0 °C to room temp., 2 h. b [Boronate] = ca. 0.3 m, PhCH3, 5 mol% BHT.
c 5 equiv. Me3N(O), C6H6, 80 °C, 24 h or 3 equiv. NaOH/3 equiv. H2O2,
THF–H2O, 2 h. d Yields are for chromatographically purified material and
are calculated from 7. e The diastereomeric ratios (8 : 9) are based upon
NMR analysis of the crude products.
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