
Synthesis of the first gold complex with a central m4-selenido ligand
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The first gold complex, [Se(AuPPh3)4](CF3SO3)2, with a m4-
selenido ligand has been prepared; the crystal structure
reveals a square pyramidal geometry with short gold–gold
interactions.

The chemistry of complexes in which a main-group element is
surrounded by several (phosphino)gold fragments was pio-
neered by Schmidbaur et al.,1 who prepared fascinating
hypercoordinated species of the type [C(AuPR3)5]+,
[C(AuPR3)6]2+, [N(AuPR3)5]2+, [P(AuPR3)5]2+ and
[P(AuPR3)6]2+.2–6 Many of these heteroatom-centered com-
plexes are electron-deficient, and gold–gold interactions pro-
vide a significant contribution to their stability. Such inter-
actions between formally closed-shell (d10) metal centres have
been termed ‘aurophilic attractions’1 and their origin is still a
matter of controversy;7 Pyykkö et al. have presented theoretical
evidence that these attractions are mainly correlation effects,
strengthened by relativistic effects.8–10

Although the chemistry of the carbon-, nitrogen-, phospho-
rus- or arsenic-centered complexes was developed rapidly, the
corresponding chalcogen-centered derivatives are still being
studied. Recently the m4-sulfido11 or m4-oxido12 gold species
were reported and shown to possess square pyramidal (apical
sulfur) or tetrahedral geometry (central oxygen), respectively.
Our previous work in the area of sulfur-centered complexes
involved examples of gold(i) or gold(iii) derivatives13–17 with a
m3- or m4-sulfur ligand. Selenium-centered compounds are
limited to the species [Se(AuPPh3)2] and
[Se(AuPPh3)3]PF6;18–20 here we report the synthesis and
structural characterisation of the first m4-selenido gold deriva-
tive.

The reaction of [Se(AuPPh3)2] with 2 equiv. of [Au(CF3-
SO3)(PPh3)] in dichloromethane affords a solution from which
the colourless air- and moisture-stable solid [Se(AuPPh3)4]-

(CF3SO3)2 1 can be isolated.† Complex 1 behaves as a 1 : 2
electrolyte in acetone solution. The 31P{1H} NMR spectrum
shows only one signal corresponding to a unique phosphorus
environment, shifted to high field in comparison with the
starting material (d 4) or the trinuclear compound
[Se(AuPPh3)3](CF3SO3) (d 1.3). In the liquid secondary
positive-ion mass spectrum the monocationic peak
[Se(AuPPh3)4]+ appears at m/z 1915 (35%).

Crystals of 1 suitable for X-ray structure analysis were
obtained from dichloromethane–heptane.‡ Compound 1 crys-
tallises with two molecules of dichloromethane and is iso-
structural with the analogous sulfido compound [S(AuPPh3)4]-
(SO3F3)2

11 and its cation (Fig. 1) is also similar to that of
[As(AuPPh3)4]BF4.21 It possesses a tetragonal pyramidal
framework, with the selenium atom occupying the apical
position. The Au atoms are not exactly coplanar, but arranged in
a flattened butterfly form with a hinge angle of 27° about the
Au1…Au2 diagonal; their deviations from the best Au4 plane
are ±0.27 Å, and that of the Se atom is 1.4 Å. The SeAu4 core
should be regarded as electron-deficient, considering the
selenido ligand to serve as a six-electron donor. Therefore it still
possesses a lone pair of electrons in the apical position, which
means that further coordination of gold around the selenium
atom is conceivable.

Complex 1 may be compared with the above-mentioned
trinuclear selenide or the tetranuclear sulfide derivatives;
observed differences are essentially as expected. The Au–Se–
Au angles, which range from 70.45(4) to 72.59(4)° in 1, are
smaller than those in [Se(AuPPh3)3]PF6 [77.7(1)–80.0(1)°]19 or
the corresponding S–Au–S angles in the isostructural
[S(AuPPh3)4](CF3SO3)2 [73.5(2)–75.6(2)°]. This difference
may be associated with the presence of more diffuse 3p orbitals
in the selenium derivative, allowing smaller angles, and/or a

Fig. 1 The structure of the cation of complex 1 in the crystal. Hydrogen
atoms have been omitted for clarity; radii are arbitrary.

Fig. 2 Association of two cations of 1 in the crystal. The CF3SO3
2 ions and

the CH2Cl2 molecules have been omitted.
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greater electron repulsion of the lone pair of electrons. The Au–
Se distances, 2.4654(13)–2.5347(14) Å, in 1 are longer than in
[Se(AuPPh3)3]+ [2.425(2)–2.451(2) Å] or (than Au–S) in
[S(AuPPh3)4]2+ [2.362(5)–2.429(5) Å]. Gold–gold distances
between adjacent gold atoms in the pyramid base are short,
2.8959(8) to 2.9605(8) Å [the diagonal distances are 3.6 Å for
Au(1)…Au(2) and 4.5 Å for Au(3)…Au(4)]. These contacts are
longer than those found in the tetranuclear sulfide derivative,
2.883(2)–2.938(2) Å. The Au–P bond lengths in 1
[2.265(3)–2.282(3) Å] lie in the expected range for two-
coordinate gold(i) complexes and are very similar to those
found in [Se(AuPPh3)3]PF6 [2.257(6)–2.283(5) Å].

The cations of 1 are paired across symmetry centres to form
loose dimers (Fig. 2), the shorter intermolecular distances being
Se…Au3A 3.248 Å and Au3…Au3A 4.45 Å.
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01), the Caja de Ahorros de la Inmaculada (CB4/98) and the
Fonds der Chemischen Industrie.

Notes and references
† Preparation: [Au(CF3SO3)(PPh3)] (0.2 mmol, 0.121 g) was added to a
solution of [Se(AuPPh3)2] (0.1 mmol, 0.100 g) in dichloromethane (20 mL)
and the mixture was stirred for 30 min and then the solvent removed under
vacuum to ca. 5 mL. Addition of diethyl ether (10 mL) gave complex 1 as
a white solid. Yield 81%. (Found: C, 39.45; H, 2.60; S, 2.70. Calc. for
C74H60Au4F6O6P4S2Se; C, 39.0; H, 2.7; S, 2.8%). LM = 165 W21 cm2

mol21. NMR: 31P{1H} (121 MHz, CDCl3, reference 85% H3PO4), d 31.0
(s); 1H (300 MHz, CDCl3, reference SiMe4), d 7.3–7.5 (m, Ph). Mass
spectrum (LSIMS+): m/z 1915 ([Se(AuPPh3)4]+, 35%).
‡ Crystal data for 1·2CH2Cl2: C74H60Au4F6O6P4S2Se·2CH2Cl2, Mr =
2383.90, monoclinic, space group P21/n, a = 16.410(2), b = 23.353(3), c
= 20.352(2) Å, b = 91.593(8)°, V = 7796.4(17) Å3, Z = 4, Dc = 2.031
Mg m23, m(Mo-Ka) = 8.31 mm21, F(000) = 4528, Siemens P4
diffractometer, l(Mo-Ka) = 0.71073 Å, T = 2100 °C. A colourless tablet
0.20 3 0.20 3 0.15 mm was used to collect 11096 intensities to 2qmax =
46°, of which after absorption corrections (transmission 0.685–0.873)
10820 were unique (Rint 0.0499). Scan type: w. The structure was solved by
direct methods and subjected to anisotropic refinement on F2 (program
SHELXL-97, G. M. Sheldrick, University of Göttingen). H atoms were
included using a riding model. The final wR(F2) was 0.0536 for 10820
reflections, 928 parameters and 1206 restraints (to local ring symmetry and

light atom displacement factors), conventional R(F) = 0.0386, S(F2) =
0.743, max. Dr 0.84 e Å23.

CCDC 182/1190. See http://www.rsc.org/suppdata/cc/1999/679/ for
crystallographic files in .cif format.
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Angew. Chem., Int. Ed. Engl., 1988, 27, 1544.

4 A. Grohmann, J. Riede and H. Schmidbaur, Nature, 1990, 345, 140.
5 H. Schmidbaur, G. Weidenhiller and O. Steigelmann, Angew. Chem.,

Int. Ed. Engl., 1991, 30, 433; R. E. Bachman and H. Schmidbaur, Inorg.
Chem., 1996, 35, 1399.

6 E. Zeller and H. Schmidbaur, J. Chem. Soc., Chem. Commun., 1993,
69.

7 N. Kaltsoyannis, J. Chem. Soc., Dalton Trans., 1997, 1.
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