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A C2/C2A-exo unsaturated pyrrolobenzodiazepine dimer 1
has been synthesised which is cytotoxic at the picomolar
level and has remarkable covalent DNA binding affinity,
raising the melting temperature of duplex-form calf thymus
DNA by 34 °C after 18 h incubation.

There is presently interest in low molecular weight ligands that
can interact with nucleic acids in a sequence-selective manner.
Such agents have potential use in the validation of DNA
sequences as potential therapeutic targets, in the therapy of
genetic-based diseases (e.g. cancer1,2), and in the development
of diagnostic agents. The pyrrolo[2,1-c][1,4]benzodiazepines
(PBDs) are a family of antitumour antibiotics derived from
various Streptomyces species that exert their biological activity
by interacting with DNA in a sequence-selective fashion,
forming a covalent bond between their electrophilic C11-
position and the exocyclic C2-NH2 group of a guanine base in
the minor groove of DNA.3 Recently, it has been demonstrated
that PBDs can inhibit both endonuclease activity4 and in vitro
transcription5 in a highly sequence-selective manner.

Although the parent PBDs span approximately three base
pairs with a preference for purine–guanine–purine (e.g. AGA)
sequences, a series of C-ring-unsubstituted C8-diyldioxy ether-
linked PBD dimers have been synthesised (e.g. DSB-120 4) that

span approximately six base pairs of DNA and have enhanced
sequence selectivity (e.g. purine-GATC-pyrimidine for DSB-
120).6,7 The sub-micromolar cytotoxicity of DSB-120 has been
attributed to its ability to irreversibly cross-link DNA via
guanine residues on opposite strands.8 In an attempt to further
extend base-pair span and recognition behaviour, we have
investigated the inclusion of C2/C2A substituents that should
follow the contour of the host minor groove. Here, we report a
novel synthesis of SJG-136 1, a C2/C2Aexo-methylene analogue
of DSB-120. This molecule has exquisite cytotoxicity in the
picomolar region (i.e. IC50 = 0.000024 mm) in the cisplatin-
resistant A2780cis human ovarian carcinoma cell line, some
9000-fold more potent than DSB-120 (IC50 = 0.21 mm).
Furthermore, SJG-136 raises the melting temperature of calf
thymus (CT) DNA by a record value of 33.6 °C after 18 h
incubation at a [PBD] : [DNA] ratio of 1 : 5.

Synthesis of the target molecule was initially approached
using the thioacetal method of Thurston and co-workers.9,10

However, this had to be abandoned due to the unwanted
addition of EtSH across the C4-exo-methylene of intermediates
of type 11 during attempted thioacetal formation. Instead,
synthesis of 1 was achieved by employing the B-ring cyclisation
strategy first reported by Fukuyama and co-workers11 (Scheme

1). Commercially available trans-4-hydroxy-l-proline 5 was
initially N-protected as carbamate 6 in 87% yield.12 Following
esterification in disappointing yield (43%) using catalytic
H2SO4 in refluxing MeOH, the resulting ester 7 was reduced
with LiBH4 to give diol 8 in quantitative yield. Selective
silylation of the primary alcohol (8 ? 9) was achieved using
DBU as a silyl transfer agent. Disilylated product and unreacted
diol were removed by column chromatography to provide the
TBDMS ether 9 in 52% yield. Oxidation to the ketone 10 was
achieved using either the Swern reaction or tetrapropylammon-
ium perruthenate (TPAP) in the presence of NMO and 4 Å
molecular sieves, both methods producing 10 in almost
quantitative yield. The key C4 (pro-C2/C2A) unsaturation was
introduced by performing a Wittig reaction on 10 to afford the
olefin 11 in 87% yield. Initial attempts to deprotect 11 using

Scheme 1 Reagents and conditions: i, Alloc-Cl, aq. NaOH, THF, 0 °C,
87%; ii, MeOH, H2SO4, D, 43%; iii, LiBH4, THF, 0 °C, 99%; iv, TBDMS-
Cl, Et3N, DBU, CH2Cl2, 52%; v, TPAP, NMO, 4 Å molecular sieves,
CH2Cl2, MeCN, 92% or (COCl)2, DMSO, Et3N, CH2Cl2, 270 °C, 95%; vi,
Ph3PCH3Br, KOBut, THF, 0 °C, 87%; vii, Bu3SnH, Pd(PPh3)2Cl2, H2O,
CH2Cl2, 77%; viii, (COCl)2, DMF, THF, then 12, Et3N, H2O, 0 °C, 74%; ix,
TBAF, THF, 0 °C, 94%; x, SnCl2.2H2O, MeOH, D, 61%; xi, Alloc-Cl,
pyridine, CH2Cl2, 0 °C, 50%; xii, TPAP, NMO, 4 Å molecular sieves,
CH2Cl2, MeCN, 32%; xiii, (COCl)2, DMSO, Et3N, CH2Cl2, 245 °C, 51%;
xiv, Pd(PPh3)4, PPh3, pyrrolidine, CH2Cl2, MeCN, 0 °C, 77% for 1 and 43%
for 20.
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PPh3/Pd(PPh3)4 in the presence of a suitable allyl scavenger
(e.g. pyrrolidine, dimedone, 2-ethylhexanoic acid)13,14 were
unsuccessful. Eventually, the Alloc group was cleaved by
palladium-catalysed hydrostannolysis15 with Bu3SnH to pro-
vide the amine 12 in 77% yield.

The known PBD dimer core 136,7 was converted to the
corresponding acid chloride, and coupled to 12 to furnish the
bis(nitro amide) 14 in 74% yield. The TBDMS protecting
groups were removed rapidly and selectively under mild
conditions using TBAF in THF to produce the bis(nitro alcohol)
15 in 94% yield. Reduction of the nitro groups while retaining
the C4/C4A unsaturation intact was achieved in 61% yield by
employing SnCl2·2H2O in refluxing MeOH. The resulting bis-
aniline 16 was Alloc-protected at the pro-N10/N10A positions
(17), before subjecting it to Swern conditions in order to bring
about oxidative cyclisation to give the bis-N10-protected
product 18. Unfortunately, 18 was prone to over-oxidation and
only the tetralactam 19 was obtained under these conditions.
However, oxidation with TPAP, NMO and 4 Å molecular
sieves afforded the required 18 in 32% yield with no
contaminating tetralactam. Deprotection of 18 with Pd(PPh3)4,
PPh3 and pyrrolidine13 afforded the novel PBD dimer 1 in 77%
yield. Treatment of 19 under identical conditions afforded 20,
the first example of a PBD dimer tetralactam, in 43% yield.

The C2/C2A-methylene groups of 1 were clearly visible in the
1H NMR (broad singlets at d 5.17 and 5.20) and 13C NMR (d
109.4) spectra.† Similarly, the diagnostic N10-C11/N10A-C11A
imine signals could be observed at d 7.68 (d, J 4.4 Hz) and d
162.6, respectively. FAB MS gave parent ions at 665 and 773,
corresponding to single and double thioglycerol addition
adducts, respectively. In addition, the observed [a]21

D value of
+357.7 (c 0.07, CHCl3) compared favourably with that for
DSB-1207 ([a]23

D +330 (c = 0.6, CHCl3)], confirming that the
C11a/C11aA stereochemistry crucial for DNA interaction had
been maintained throughout the synthesis. 

The data presented in Table 1 show that SJG-136 1 is the
most potent DNA-stabilising agent known to date according to
this particular assay.16 For a 1 : 5 molar ratio of [PBD] : [DNA],
the PBD dimer elevates the helix melting temperature of CT
DNA by an unprecedented 33.6 °C after incubation for 18 h at
37 °C. Under identical conditions, the C-ring-unsubstituted
dimer DSB-120 4 provides a DTm of 15.1 °C, demonstrating the
extraordinary effect of introducing C2/C2A-unsaturation. In
common with other PBD dimers, 1 exerts most of its effect upon
the GC-rich or high temperature regions of the DNA melting
curves. In a similar fashion to DSB-120, it provides some
60–80% of its stabilising effect without prior incubation,
suggesting a kinetic effect in the reactivity profile. However, the
comparative DTm curves show that, on a concentration basis
alone, SJG-136 is !10-fold more effective than DSB-120. Even
at a [PBD] : [DNA] molar ratio of 1 : 100, SJG-136 effects

significantly better DNA binding affinity than the monomer
tomaymycin 3 at a 1 : 5 molar ratio (see Table 1).

Representative cytotoxicity data for SJG-136 in the human
ovarian carcinoma cell line A2780 and its cisplatin-resistant
subline A2780cisR are shown in Table 1, together with data for
DSB-120 and cisplatin for comparison. Relative to the parental
line, the A2780cisR subline is known to have elevated GSH
levels, an increased level of repair of DNA–cisplatin adducts,
and a decreased ability to uptake cisplatin.17 The IC50 value for
1 in the A2780 cell line is only 23 pm, representing a 320-fold
increase in cytotoxicity compared to DSB-120 (IC50 = 7.2 nm).
Interestingly, whereas DSB-120 has a reduced potency towards
A2780cisR (IC50 = 0.21 mm), SJG-136 is almost 9000-fold
more potent in this cell line with a similar IC50 value (24 mm) to
that in the parent cells, giving a Resistance Factor of 1.1. The
fact that DSB-120 and cisplatin give RF values of 29.2 and 32,
respectively, for this pair of cell lines suggests that SJG-136
may have potential in cisplatin-refractory disease.

In summary, the synthesis of SJG-136 1 reported here
demonstrates the importance of C2/C2A-exo-unsaturation in
enhancing the DNA-binding affinity and cytotoxicity of the
PBD dimers, and in overcoming cisplatin resistance. The
sequence selectivity and cross-linking ability of 1 will be
reported elsewhere.

We thank the CRC for providing financial support (Pro-
gramme Grant SP1938/0401 to DET) and Jane Rimington for
help with manuscript preparation.
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Table 1 Thermal denaturation with calf thymus DNAa at a [PBD] : [DNA]
molar ratio of 1 : 5b and in vitroc cytotoxicity data in the A2780 and
A2780cisR cell lines for SJG-136 1 and DSB-120 4

Induced DTm/°Ca,b,d after
incubation at 37 °C for IC50/mMc

Compound 0 h 4 h 18 h A2780 A2780cisR RFe

SJG-136 1 25.7 31.9 33.6 0.0000225 0.000024 1.1
DSB-120 4 10.2 13.1 15.1 0.0072 0.21 29.2
Cisplatin — — — 0.265 8.4 32
a For CT-DNA at pH 7.00 ± 0.01, Tm = 67.83 ± 0.06 °C (mean value from
30 separate determinations). All DTm values ± 0.1–0.2 °C. b For a 1 : 5 molar
ratio of [ligand] : [DNA], where CT DNA concentration = 100 mm in
aqueous buffer [10 mm sodium phosphate + 1 mm EDTA, pH 7.00 ± 0.01].
c Dose of PBD required to inhibit cell growth by 50% compared with PBD-
free controls. The cells were incubated with the compounds for 96 h at 37
°C. d For comparative purposes: DTm of tomaymycin 3 = 0.97, 2.38 and
2.56 °C at 0, 4 and 18 h, respectively. e RF is the resistance factor (IC50

resistant/parent).
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