Synthesis of a novel C2/C2'-*exo* **unsaturated pyrrolobenzodiazepine cross-linking agent with remarkable DNA binding affinity and cytotoxicity**

Stephen J. Gregson,*a* **Philip W. Howard,****a* **Terence C. Jenkins,***b* **Lloyd R. Kelland***c* **and David E. Thurston****a*

a CRC Gene Targeted Drug Design Research Group, School of Pharmacy and Biomedical Sciences, University of Portsmouth, St Michael's Building, White Swan Road, Portsmouth, Hants, UK PO1 2DT. E-mail: david.thurston@port.ac.uk

b School of Chemical and Life Sciences, University of Greenwich, Wellington St., Woolwich, London, UK SE18 6PF

c CRC Centre for Cancer Therapeutics, Institute for Cancer Research, Clifton Avenue, Sutton, Surrey, UK SM2 5PX

Received (in Liverpool, UK) 16th December 1998, Accepted 1st March 1999

A C2/C2[']-exo unsaturated pyrrolobenzodiazepine dimer 1 **has been synthesised which is cytotoxic at the picomolar level and has remarkable covalent DNA binding affinity, raising the melting temperature of duplex-form calf thymus DNA by 34 °C after 18 h incubation.**

There is presently interest in low molecular weight ligands that can interact with nucleic acids in a sequence-selective manner. Such agents have potential use in the validation of DNA sequences as potential therapeutic targets, in the therapy of genetic-based diseases (*e.g.* cancer1,2), and in the development of diagnostic agents. The pyrrolo[2,1-*c*][1,4]benzodiazepines (PBDs) are a family of antitumour antibiotics derived from various *Streptomyces* species that exert their biological activity by interacting with DNA in a sequence-selective fashion, forming a covalent bond between their electrophilic C11 position and the exocyclic C2-NH2 group of a guanine base in the minor groove of DNA.3 Recently, it has been demonstrated that PBDs can inhibit both endonuclease activity4 and *in vitro* transcription5 in a highly sequence-selective manner.

Although the parent PBDs span approximately three base pairs with a preference for purine–guanine–purine (*e.g.* AGA) sequences, a series of C-ring-unsubstituted C8-diyldioxy etherlinked PBD dimers have been synthesised (*e.g.* DSB-120 **4**) that

span approximately six base pairs of DNA and have enhanced sequence selectivity (*e.g.* purine-GATC-pyrimidine for DSB-120).6,7 The sub-micromolar cytotoxicity of DSB-120 has been attributed to its ability to irreversibly cross-link DNA *via* guanine residues on opposite strands.8 In an attempt to further extend base-pair span and recognition behaviour, we have investigated the inclusion of $C2\overline{C}2'$ substituents that should follow the contour of the host minor groove. Here, we report a novel synthesis of SJG-136 **1**, a C2/C2'exo-methylene analogue of DSB-120. This molecule has exquisite cytotoxicity in the picomolar region (*i.e.* IC₅₀ = 0.000024 μ m) in the cisplatinresistant A2780cis human ovarian carcinoma cell line, some 9000-fold more potent than DSB-120 (IC₅₀ = 0.21 μ m). Furthermore, SJG-136 raises the melting temperature of calf thymus (CT) DNA by a record value of 33.6 °C after 18 h incubation at a [PBD]:[DNA] ratio of 1 : 5.

Synthesis of the target molecule was initially approached using the thioacetal method of Thurston and co-workers.^{9,10} However, this had to be abandoned due to the unwanted addition of EtSH across the C4-*exo*-methylene of intermediates of type **11** during attempted thioacetal formation. Instead, synthesis of **1** was achieved by employing the B-ring cyclisation strategy first reported by Fukuyama and co-workers¹¹ (Scheme

1). Commercially available *trans-*4-hydroxy-l-proline **5** was initially *N*-protected as carbamate **6** in 87% yield.12 Following esterification in disappointing yield (43%) using catalytic H2SO4 in refluxing MeOH, the resulting ester **7** was reduced with LiBH4 to give diol **8** in quantitative yield. Selective silylation of the primary alcohol $(8 \rightarrow 9)$ was achieved using DBU as a silyl transfer agent. Disilylated product and unreacted diol were removed by column chromatography to provide the TBDMS ether **9** in 52% yield. Oxidation to the ketone **10** was achieved using either the Swern reaction or tetrapropylammonium perruthenate (TPAP) in the presence of NMO and 4 Å molecular sieves, both methods producing **10** in almost quantitative yield. The key C4 (pro-C2/C2') unsaturation was introduced by performing a Wittig reaction on **10** to afford the olefin **11** in 87% yield. Initial attempts to deprotect **11** using

Scheme 1 *Reagents and conditions*: i, Alloc-Cl, aq. NaOH, THF, 0 °C, 87%; ii, MeOH, H_2SO_4 , Δ , 43%; iii, LiBH₄, THF, 0 °C, 99%; iv, TBDMS-Cl, Et₃N, DBU, CH₂Cl₂, 52%; v, TPAP, NMO, 4 Å molecular sieves, CH₂Cl₂, MeCN, 92% or (COCl)₂, DMSO, Et₃N, CH₂Cl₂, -70 °C, 95%; vi, Ph_3PCH_3Br , KOBu^t, THF, 0 °C, 87%; vii, Bu₃SnH, Pd(PPh₃)₂Cl₂, H₂O, CH₂Cl₂, 77%; viii, (COCl)₂, DMF, THF, then **12**, Et₃N, H₂O, 0 °C, 74%; ix, TBAF, THF, 0 °C, 94%; x, SnCl₂.2H₂O, MeOH, Δ , 61%; xi, Alloc-Cl, pyridine, CH₂Cl₂, 0 °C, 50%; xii, TPAP, NMO, 4 Å molecular sieves, CH₂Cl₂, MeCN, 32%; xiii, (COCl)₂, DMSO, Et₃N, CH₂Cl₂, -45 °C, 51%; xiv, Pd(PPh₃)₄, PPh₃, pyrrolidine, CH₂Cl₂, MeCN, 0 °C, 77% for 1 and 43% for **20**.

 $PPh_3/Pd(PPh_3)_4$ in the presence of a suitable allyl scavenger (*e.g.* pyrrolidine, dimedone, 2-ethylhexanoic acid)13,14 were unsuccessful. Eventually, the Alloc group was cleaved by palladium-catalysed hydrostannolysis¹⁵ with Bu₃SnH to provide the amine **12** in 77% yield.

The known PBD dimer core **13**6,7 was converted to the corresponding acid chloride, and coupled to **12** to furnish the bis(nitro amide) **14** in 74% yield. The TBDMS protecting groups were removed rapidly and selectively under mild conditions using TBAF in THF to produce the bis(nitro alcohol) **15** in 94% yield. Reduction of the nitro groups while retaining the $C4/C4'$ unsaturation intact was achieved in 61% yield by employing SnCl₂·2H₂O in refluxing MeOH. The resulting *bis*aniline **16** was Alloc-protected at the *pro*-N10/N10' positions (**17**), before subjecting it to Swern conditions in order to bring about oxidative cyclisation to give the bis-N10-protected product **18**. Unfortunately, **18** was prone to over-oxidation and only the tetralactam **19** was obtained under these conditions. However, oxidation with TPAP, NMO and 4 Å molecular sieves afforded the required **18** in 32% yield with no contaminating tetralactam. Deprotection of 18 with Pd(PPh₃)₄, PPh3 and pyrrolidine13 afforded the novel PBD dimer **1** in 77% yield. Treatment of **19** under identical conditions afforded **20**, the first example of a PBD dimer tetralactam, in 43% yield.

The C2/C2^{*I*}-methylene groups of **1** were clearly visible in the ¹H NMR (broad singlets at δ 5.17 and 5.20) and ¹³C NMR (δ 109.4) spectra. \dagger Similarly, the diagnostic N10-C11/N10'-C11' imine signals could be observed at δ 7.68 (d, *J* 4.4 Hz) and δ 162.6, respectively. FAB MS gave parent ions at 665 and 773, corresponding to single and double thioglycerol addition adducts, respectively. In addition, the observed $[\alpha]_D^{21}$ value of +357.7 (*c* 0.07, CHCl3) compared favourably with that for DSB-120⁷ ($[\alpha]_D^{23}$ +330 ($c = 0.6$, CHCl₃)], confirming that the C11a/C11a' stereochemistry crucial for DNA interaction had been maintained throughout the synthesis.

The data presented in Table 1 show that SJG-136 **1** is the most potent DNA-stabilising agent known to date according to this particular assay.16 For a 1 : 5 molar ratio of [PBD]:[DNA], the PBD dimer elevates the helix melting temperature of CT DNA by an unprecedented 33.6 °C after incubation for 18 h at 37 °C. Under identical conditions, the C-ring-unsubstituted dimer DSB-120 4 provides a ΔT_{m} of 15.1 °C, demonstrating the extraordinary effect of introducing $C2/C2'$ -unsaturation. In common with other PBD dimers, **1** exerts most of its effect upon the GC-rich or high temperature regions of the DNA melting curves. In a similar fashion to DSB-120, it provides some 60–80% of its stabilising effect without prior incubation, suggesting a kinetic effect in the reactivity profile. However, the comparative ΔT_{m} curves show that, on a concentration basis alone, SJG-136 is ≥ 10 -fold more effective than DSB-120. Even at a $[PBD]$: $[DNA]$ molar ratio of $1:100$, SJG-136 effects

Table 1 Thermal denaturation with calf thymus DNA*a* at a [PBD]:[DNA] molar ratio of 1 : 5*b* and *in vitroc* cytotoxicity data in the A2780 and A2780cisR cell lines for SJG-136 **1** and DSB-120 **4**

	Induced $\Delta T_{\rm m}$ /°Ca,b,d after incubation at 37 °C for			$IC_{50}/\mu\mathrm{M}^c$		
Compound	0 _h	4 h	18 h	A2780	A2780cisR RFe	
SJG-1361 DSB-1204 Cisplatin	25.7 10.2	31.9 13.1	33.6 15.1	0.0000225 0.000024 0.0072 0.265	0.21 8.4	1.1 29.2 32

a For CT-DNA at pH 7.00 \pm 0.01, $T_m = 67.83 \pm 0.06$ °C (mean value from 30 separate determinations). All ΔT_m values \pm 0.1–0.2 °C. *b* For a 1:5 molar ratio of [ligand]: [DNA], where CT DNA concentration $= 100 \mu m$ in aqueous buffer [10 mm sodium phosphate + 1 mm EDTA, pH 7.00 ± 0.01]. *c* Dose of PBD required to inhibit cell growth by 50% compared with PBDfree controls. The cells were incubated with the compounds for 96 h at 37 °C. *d* For comparative purposes: ΔT_m of tomaymycin **3** = 0.97, 2.38 and 2.56 °C at 0, 4 and 18 h, respectively. e RF is the resistance factor (IC₅₀) resistant/parent).

significantly better DNA binding affinity than the monomer tomaymycin **3** at a 1:5 molar ratio (see Table 1).

Representative cytotoxicity data for SJG-136 in the human ovarian carcinoma cell line A2780 and its cisplatin-resistant subline A2780cisR are shown in Table 1, together with data for DSB-120 and cisplatin for comparison. Relative to the parental line, the A2780cisR subline is known to have elevated GSH levels, an increased level of repair of DNA–cisplatin adducts, and a decreased ability to uptake cisplatin.¹⁷ The IC_{50} value for **1** in the A2780 cell line is only 23 pm, representing a 320-fold increase in cytotoxicity compared to DSB-120 ($IC_{50} = 7.2$ nm). Interestingly, whereas DSB-120 has a reduced potency towards A2780cisR (IC₅₀ = 0.21 μ m), SJG-136 is almost 9000-fold more potent in this cell line with a similar IC_{50} value (24 μ m) to that in the parent cells, giving a Resistance Factor of 1.1. The fact that DSB-120 and cisplatin give RF values of 29.2 and 32, respectively, for this pair of cell lines suggests that SJG-136 may have potential in cisplatin-refractory disease.

In summary, the synthesis of SJG-136 **1** reported here demonstrates the importance of C2/C2'-exo-unsaturation in enhancing the DNA-binding affinity and cytotoxicity of the PBD dimers, and in overcoming cisplatin resistance. The sequence selectivity and cross-linking ability of **1** will be reported elsewhere.

We thank the CRC for providing financial support (Programme Grant SP1938/0401 to DET) and Jane Rimington for help with manuscript preparation.

Notes and references

 \dagger *Selected data* for **1**: $\delta_H(270 \text{ MHz}, \text{CDCl}_3)$ 7.68 (d, 2H, *J* 4.4, H11/H11'), 7.49 (s, 2H, H6/H6'), 6.85 (s, 2H, H9/H9'), 5.20 and 5.17 (2 \times br s, 4H, H12/H12'), 4.46–4.19 (m, 8H, H3/H3' and H13/H13'), 3.93 (s, 6H, 2 \times OCH₃ at C7/C7'), 3.89–3.80 (m, 2H, H11a/H11a'), 3.12 (dd, 2H, $J_1 = 16.2$, *J*₂ 8.6, H1b/H1b'), 2.94 (d, 2H, *J* 16.3, H1a/H1a'), 2.45–2.38 (m, 2H, 2 \times H14); m/z (FAB) 773 ([M + H + 2 \times thioglycerol]⁺, 3%), 665 ([M + H + thioglycerol]⁺, 7), 557 ($[M + H]$ ⁺, 9), 464 (3), 279 (12), 257 (5), 201 (5), 185 (43), 166 (6), 149 (12), 93 (100); $v_{\text{max}}(Nujol)/cm^{-1}$ 3600–3100 (br), 2923, 2849, 1599, 1511, 1458, 1435, 1391, 1277, 1228, 1054, 1011, 870, 804, 761, 739; $[\alpha]_D^{21}$ + 357.7 (*c* 0.07, CHCl₃).

- 1 S. Neidle, M. S. Puvvada and D. E. Thurston, *Eur. J. Cancer,* 1994, **30A**, 567.
- 2 S. Neidle and D. E. Thurston, *New Targets for Cancer Chemotherapy*, ed. D. J. Kerr and P. Workman, CRC Press, London, 1994, p. 159.
- 3 D. E. Thurston, in *Molecular Aspects of Anticancer Drug–DNA Interactions*, ed. S. Neidle and M. J. Waring, Macmillan, London, 1993, p. 54.
- 4 M. S. Puvvada, J. A. Hartley, T. C. Jenkins and D. E. Thurston, *Nucleic Acids Res.,* 1993, **21**, 3671.
- 5 M. S. Puvvada, J. A. Hartley, I. Gibson, P. Stephenson, T. C. Jenkins and D. E. Thurston, *Biochemistry,* 1997, **36**, 2478.
- 6 D. S. Bose, A. S. Thompson, J. Ching, J. A. Hartley, M. D. Berardini, T. C. Jenkins, S. Neidle, L. H. Hurley and D. E. Thurston, *J. Am. Chem. Soc.,* 1992, **114**, 4939.
- 7 D. E. Thurston, D. S. Bose, A. S. Thompson, P. W. Howard, A. Leoni, S. J. Croker, T. C. Jenkins, S. Neidle, J. A. Hartley and L. H. Hurley, *J. Org. Chem.,* 1996, **61**, 8141.
- 8 T. C. Jenkins, L. H. Hurley, S. Neidle and D. E. Thurston, *J. Med. Chem.,* 1994, **37**, 4529.
- 9 D. R. Langley and D. E. Thurston, *J. Org. Chem.,* 1987, **52**, 91.
- 10 D. E. Thurston and D. S. Bose, *Chem. Rev.,* 1994, **94**, 433.
- 11 T. Fukuyama, G. Liu, S. D. Linton, S.-C. Lin and H. Nishino, *Tetrahedron Lett.,* 1993, **34**, 2577.
- 12 M. Murata, T. Chiba and A. Yamada, *Eur. Pat. Appl.* 89102859.9; Publication No. 0-330-108-A1; Filing date: 18 Feb. 1989.
- 13 R. Deziel, *Tetrahedron Lett.,* 1987, **28**, 4371.
- 14 S. F. Martin and C. L. Campbell, *J. Org. Chem.,* 1988, **53**, 3184; H. Kunz and C. Unverzagt, *Angew. Chem., Int. Ed. Engl.,* 1984, **23**, 436.
- 15 O. Dangles, F. Guibé, G. Balavoine, S. Lavielle and A. Marquet, *J. Org. Chem.,* 1987, **52**, 4984.
- 16 G. B. Jones, C. L. Davey, T. C. Jenkins, A. Kamal, G. G. Kneale, S. Neidle, G. D. Webster and D. E. Thurston, *Anti-Cancer Drug Des.,* 1990, **5**, 249.
- 17 M. Smellie, L. R. Kelland, D. E. Thurston, R. L. Souhami and J. A. Hartley, *Br. J. Cancer*, 1994, **70**, 48.

Communication 8/09791G