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Strained cis,cis,cis,trans-tribenzo[5.5.5.6]fenestranes are ac-
cessible in good yield by two-fold cyclodehydration of cis-
2,6-diphenylspiro[cyclohexane-1,2A-indane]-1A,3A-diols and
the particularly high acidity of their ‘inverted’ benzylic
bridgehead C–H bonds, causing facile epimerization to the
more stable all-cis-tribenzo[5.5.5.6]fenestranes, is shown.

Strained stereoisomers of all-cis-[m.n.o.p]fenestranes have
been of particular interest with respect to the quest for planar
tetracoordinate carbon.1–3 While extensive computational work
has been published on strain and geometry of stereoisomeric
fenestranes,3a–c,4–6 only a few small-ring congeners bearing a
single trans-fused pair of rings together with three cis-annelated
ones, i.e. the cis,cis,cis,trans-fenestranes, are known by experi-
ment.7–9 Fenestranes bearing more than one trans junction have
remained unknown to-date,3,10 and even normal-ring fenes-
tranes containing the cis,cis,cis,trans skeleton have only
recently been realized in a single case.11 Herein we report the
first synthesis of a cis,cis,cis,trans-tribenzo[5.5.5.6]fenestrane 2
and some of its derivatives, and demonstrate the ease and some
mechanistic details of its epimerization to the corresponding all-
cis stabilomers.

Benzoannelated all-cis-[5.5.5.6]- and all-cis-[5.5.5.5]-fenes-
tranes have been synthesized by two-fold cyclodehydration of
the stereochemically suitable trans-2,6-diarylspiro[cyclohex-
ane-1,2A-indane]-1A,3A-diols.12,13 In these tandem cyclization
reactions, the trans orientation of the two aryl groups translates
directly into the all-cis stereochemistry of the fenestrane
nucleus. Surprisingly, and contra-intuitively, we found that,
under similar conditions, isomeric cis-diarylspirodiols such as 1
and 3,14 which are readily accessible from the corresponding
spirotriketones,15,16 undergo two-fold cyclization as well,
giving the corresponding cis,cis,cis,trans-[5.5.5.6]fenestranes,
such as 2 and 4,† in good yields (Scheme 1). Force-field and
semi-empirical MO calculations (MM+ and PM3, respectively)
suggest that cis,cis,cis,trans-[5.5.5.6]fenestranes are, by ca. 10
kcalmol21, more strained than the all-cis isomers,3a in agree-
ment with previous estimates on alicyclic analogues,4,6 and that
one of the unbridged bond angles of the fenestrane nucleus is
also considerably increased.‡ Moreover, the cyclohexane ring

adopts a boat conformation in the most stable conformer of 2
and 4.14

Reduction of fenestranone 4 under Wolff–Kishner–Huang–
Minlon conditions, as well as reduction of its hydrazone with
KOBut in DMSO at 20 °C and even Raney nickel-catalyzed
hydrogenolysis of thioacetal 6,14 all resulted in the formation of
the all-cis hydrocarbon 5 instead of 2 (Scheme 2). Obviously,
the basic conditions used are sufficiently harsh to induce
epimerization by a deprotonation–reprotonation sequence. In
contrast, radical-induced desulfurization of 6 using Bu3SnH and
AIBN afforded retention of configuration at the ‘inverted’
bridgehead during reduction, giving the cis,cis,cis,trans-tri-
benzo[5.5.5.6]fenestrane 2 in good yield. These results suggest
that C–H acidity at the strained fenestrane nucleus is the origin
of epimerization, irrespective of the presence of a functional
group at C(14).

In fact, independent experiments carried out with fenestranes
2 and 5 under essentially the same conditions used for reduction
of 4 and its hydrazone revealed that base-induced epimerization
occurs with high selectivity by deprotonation at the ‘inverted’
bridgehead (C-15a). Thus, treatment of all-cis-fenestrane 5 with
KOBut in [2H6]DMSO gave rise to complete H/D exchange at
the benzhydrylic bridgeheads to generate 5b, whereas the
cis,cis,cis,trans isomer 2 underwent complete epimerization
with concomitant incorporation of three deuterium atoms at the
benzhydrylic and one of the benzylic positions to yield 5c

Scheme 1 Reagents and conditions: i, H3PO4, toluene, D; 1? 2, 24 h, 82%;
3? 4, 15 h, 87%.

Scheme 2 Reagents and conditions: i, N2H4·H2O, KOH, diethylene glycol,
120 ? 180 °C, 73%; ii, (a) N2H4·H2O, EtOH, D, 92%, (b) KOBut, DMSO,
20 °C, 80%; iii, (CH2SH)2, BF3·Et2O, AcOH, 20 °C, 95%; iv, Raney-Ni
(W2, ‘neutral’), 1,4-dioxane, D, 80%; v, Bu3SnH, AIBN, benzene, D,
87%.
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(Scheme 3, paths iii). Moreover, use of KOD in O,OA-
dideuterated diethylene glycol revealed that the C(15a)–H bond
of 2 is far more acidic than the benzhydrylic C–H bonds in both
2 and 5. When heated to 180 °C for 3 h, the cis,cis,cis,trans
isomer 2 was partially epimerized (path i) to give a mixture
consisting exclusively of monodeuterated all-cis-fenestrane 5a
and unlabelled starting material ([5a] : [2] ≈ 46 : 54 by 1H
NMR). Only prolongated heating at 240 °C effected relatively
slow incorporation of deuterium into the benzhydrylic bridge-
heads of 5a to eventually give 5c (path ii).

The results clearly show that benzoannelated cis,cis,cis,-
trans-[5.5.5.6]fenestranes are easily accessible by directed
synthesis, in spite of the considerable increase of strain in the
tetracyclic framework, but that the additional strain also induces
facile base-induced epimerization of the ‘inverted’ bridgehead
to give the more stable all-cis isomers. This sheds some light on
the extraordinary challenge to synthesize benzoannelated
cis,cis,cis,trans-[5.5.5.5]fenestranes.3a
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Notes and references
† Selected data for 2: mp 222–223 °C; dH(CDCl3, 500 MHz) 7.41–7.45 (m,
2 H), 7.00-7.20 (m, 10 H), 4.43 (s, 2 H), 3.79–3.82 (m, 2 H), 2.32–2.37 (m,
1 H), 2.21–2.24 (m, 1 H), 1.68–1.71 (m, 1 H), 1.53–1.59 (m, 2 H), 1.00–1.09
(m, 1 H); dC(CDCl3, 125.8 MHz) 146.6 (s), 146.3 (s), 145.9 (s), 144.8 (s),
144.7 (s), 143.8 (s), 126.9 (d), 126.8 (d), 126.7 (d), 126.6 (d), 126.4 (d),
126.2 (d), 125.1 (d), 124.6 (d), 124.5 (d), 123.2 (d), 122.8 (d), 120.9 (d),
66.8 (s, centro-C), 59.7 (d), 56.4 (d), 47.0 (d), 45.3 (d), 28.1 (t), 18.3 (t), 15.4

(t); m/z (EI, 70 eV) 334 (100, M•+), 305 (34), 291 (34), 257 (24). For 4: mp
293–297 °C; dH(CDCl3, 500 MHz) 7.47–7.50 (m, 1 H), 7.38–7.41 (m, 1 H),
7.02–7.21 (m, 10 H), 4.58 (s, 1 H), 4.43 (s, 1 H), 4.28 (dd, 3J 3.4, 3J 14.6,
1 H), 4.28 (d, J 5.1, 1 H), 3.38 (dd, 3J 6.2, 2J 15.1, 1 H), 2.94 (dd, 3J 3.6, 2J
18.6, 1 H), 2.70 (dd, 3J 1.8, 2J 15.1, 1 H), 2.27 (dd, 3J 14.8, 2J 18.6, 1 H);
dC(CDCl3, 125.8 MHz) 211.2 (s), 145.6 (s), 145.0 (s), 144.7 (s), 143.9 (s),
143.7 (s), 141.0 (s), 127.9 (d), 127.8 (d), 127.2 (d), 127.1 (d), 127.0 (d),
126.6 (d), 125.6 (d), 125.1 (d), 124.5 (d), 123.3 (d), 123.2 (d), 121.0 (d),
67.2 (s, centro-C), 58.7 (d), 56.7 (d), 47.1 (d), 47.0 (t), 44.3 (d), 37.8 (t); m/z
(EI, 70 eV) 348 (100, M•+), 305 (37), 290 (39).
‡ Increase of strain in the cis,cis,cis,trans-hydrocarbon, as calculated by
MM+ (PM3): DEstrain = DHf(2) 2 DHf(5) = 9.1 (10.4) kcal mol21; bond
angles calculated for 2: C(4b)–C(12c)–C(C12b) = 118.7° (120.0°), C(8b)–
C(12c)–C(C15a) = 115.8° (116.5°).
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Scheme 3 Reagents and conditions: i, KOD, [O,OA-2H2]diethylene glycol,
180 °C, 3 h; ii, KOD, [O,OA-2H2]diethylene glycol, 240 °C, > 4 h; iii,
KOBut, [2H6]DMSO, 20 °C, 15 h; > 90% in both cases.
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