Diels-Alder trapping of an o-dinitroso intermediate in the 1-oxide/3-oxide
interconversion of a 2,1,3-benzoxadiazole derivative
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Convincing evidence is presented that the o-dinitroso
intermediate involved in the exchange of the 1-oxide and
3-oxide tautomers of 6-nitro[2,1,3]oxadiazolo[4,5-b]pyridine
1-oxide 5 is the precursor of the Diels—Alder diadduct 7
isolated upon treatment of this compound with cyclohexa-
diene in CHCls;.

The high susceptibility of the nitro-substituted 2,1,3-benzoxa
diazoles to undergo covalent nucleophilic addition or substitu-
tion processes has attracted considerable attention over the two
last decades, leading to numerous synthetic, analytical and
biological applications.18 A most significant finding has been,
however, our recent discovery that the carbocyclic ring of these
strongly electron-deficient heteroaromatics can also be in-
volved in a variety of Diels-Alder type reactions.® As a
prototype example, 4,6-dinitro-2,1,3-benzoxadiazole 1-oxide 1
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has been found to act asadienophilein normal el ectron demand
Diels-Alder (NEDDA) processes or as a heterodiene in inverse
electron demand Diels-Alder (IEDDA) processes to give the
monoadducts 2 and 3, respectively, upon treatment with
cyclopentadiene at —20 °C in CHCl3. In the presence of excess
cyclopentadiene at 0 °C, the IEDDA-NEDDA diadduct 4 is
guantitatively formed with high stereoselectivity at the expense
of 2and 3.2

Here we report our finding of another Diels-Alder reactivity
pattern that we have identified in the reaction of 6-
nitro[2,1,3]oxadiazolo[4,5-b]pyridine  1-oxide 510 with
cyclohexadiene. Thisnew pattern provides convincing evidence
in support of the long standing belief that the mechanism of the
interconversion of the 1-oxide/3-oxide tautomers (Scheme 1)
proceeds through formation of an o-dinitroso intermedi-
ate.”11.12 So far, it is only through photolysis of unsubstituted
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Scheme 1

2,1,3-benzoxadiazole and o-nitrophenyl azide in Ar matrices at
14 K that the existence of such an unstable species could be
demonstrated by IR and UV spectroscopy.13

Treatment of 5 with cyclohexa-1,3-diene (5 equiv.) in
CHClst affords a 2:1 mixture of two products which were
readily separated by column chromatography and isolated as
pale yellow solids. Although it has been obtained with a crystal
of poor quality, the ORTEP view in Fig. 1 leaves no doubt that
the major product isthe diadduct 748 whose formation can only
be accounted for in terms of two NEDDA processes, in which
the N=O double bonds of the o-dinitroso intermediate 6 play the
role of the dienophile contributors (Scheme 2). Such behaviour
of N=O fragmentsiswell known.14 Based on adetailed analysis
via COSY, HETCOR and J modulation experiments, the NMR
data agree with the stereochemistry assigned to 7 in the solid
state. The recovery of a pyridine ring on formation of 7 from 5
issupported by the disappearance in the 13C NMR spectraof the

Fig. 1 ORTEP view of 7, as derived from a partial structure solution (only
one enantiomer is represented).
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resonance typical for the Cg carbon of a 2,1,3-benzoxodiazole
structure (8¢ 108.79 in 5)1011 gnd its replacement by a
resonance at 6c 137.59 for 7, a classical value for a pure
aromatic carbon.

In view of the H and 13C NMR spectra also recorded in
CDClj3, the minor product can be formulated as the cycloadduct
8initsracemic form. Thisadduct, which isnot very stablein the
solid state, results from a regioselective and diastereosel ective
NEDDA process involving the Cs—C- double bond of 5 as the
dienophile contributor. It should be noted that the related endo
cycloadduct 9 was recently isolated as the only product of the
reaction of cyclopentadiene with 4-nitro-6-trifluoromethyl-
2,1,3-benzoxadiazole.1s

In the literature, many examples of 2,1,3-benzoxadiazole
structures undergoing the tautomeric exchange shown in
Scheme 1 have been reported,10-12 but no firm Diels-Alder
support for the transient formation of the postulated o-dinitroso
intermediate a ong the reaction coordinate has been obtained so
far. The isolation and characterization of the diadduct 7 in a
thermal processistherefore of great relevance to the rearrange-
ment shown in Scheme 1, especially because this equilibrium
has been shown to be strongly shifted toward the 1-oxide
tautomer in the case of the 6-nitro[2,1,3]oxadiazolo[4,5-b]-
pyridine 1-oxide system.10

Notes and references

T Synthetic procedure for 7 and 8: 1.3 ml of cyclohexa-1,3-diene (13.75
mmol) were added to a solution of 0.5 g of 5 (2.75 mmol) in CHCl3. The
solution turned rapidly orange.The mixture was maintained under stirring at
room temperature for 2 d. Evaporation of CHCIl3 under reduced pressure
gave a mixture of 7 and 8 as a red semi-solid (0.8 g). The product was
purified by chromatography on silica gel using a gradient of EtOAc—
pentane as eluent; 7 and 8 were obtained in a 2:1 ratio as yellow
crystals.

T Selected data for 7: 64(300.13 MHz, acetone-ds) (1.40, 1.60 and 2.21 (m,
H-14, H-15, H-20, H-21), 4.88 (dt, 2 H, H-10, H-16, J 1.47, 5.88), 5.06 (m,
1 H, H-13 or H-19), 5.67 (m, 1 H, H-13 or H-19), 6.01 (ddd, 1H, H-11 or
H-17,J1.47, 6.24, 7.71), 6.16 (ddd, 1H, H-11 or H-17, J 1.47, 6.24, 8.07),
6.62 (ddd, 1 H, H-12 or H-18, J 1.85, 5.88, 8.07), 6.74 (ddd, 1 H, H-12 or
H-18, J 1.47, 5.88, 6.27), 7.88 (d, 1 H, H-7, Js ; 2.58), 8.62 (d, 1 H, H-5);
Oc (75.47 MHz, acetone-ds) 21.36, 21.82, 24.40 and 24.96 (C-14, C-15, C-
20, C-21), 50.45 and 51.43 (C-10, C-16), 70.72 and 71.24 (C-13, C-19),
121.41(C7),129.91 and 130.35(C-11, C-17), 132.95 and 133.27 (C-12, C-
18), 137.59 (C 8), 138.20 (C 5), 140.78 (C 6), 156.52 (C 9); mp 147-150 °C;
m/z(El) 342 (M+), 262[M — CgHg*]), 232 (M — CgHg — NO*]) (Found:
C, 59.63; H, 5.43; N, 16.04 . C;7H1sN40O,4 requires C, 59.65; H, 5.26; N,
16.37%). For 8: 64(300.13 MHz, acetone-de) 1.15-1.60 (m, 4 H, H-14, H-
15), 343 (dd, 1 H, H-10, J7-10 2.94, J10-41 6.27), 4.07 (dd, 1 H, H-7 , J5 7
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1.83),3.79 (m, 1 H, H-13), 6.35 (dd, 1 H, H-12, J;, 4, 7.35), 6.65 (dd, 1 H,
H-11), 8.48 (s, 1 H, H-5); oc (75.47 MHz, acetone-dg) 19.00 and 20.36 (C-
14, C-15), 30.54 (C-10), 35.62 (C-7), 38.41 (C-13), 91.38 (C-6), 102.15 (C-
8), 130.95 (C-12), 136.51 (C-11), 157.26 (C-9), 166.95 (C-5); mp 185 °C;
m'z (El) 234 [M + H,0-NO;*]), 216 ((M — NOx*]).

§ Crystal data for 7: C17H1gN4O4, M = 342.35, monoclinic, space group
P2,/n, a = 6.418(8), b = 10.010(11), c = 24.850(3) A, B = 91.95(6)°, U
= 1595(3) A3, Z = 4, D, = 1.425 mgcm-3, y(Mo-Ka) = 1.04cm-1, A
= 0.71073 A, graphite monochromator, crystal dimensions: 0.08 x 0.32 x
0.40 mm. The data were collected up to 26 = 60° on a Siemens SMART
three-circle diffractometer equipped with a bidimensional CCD detector.
The poor quality of the data prevents the structure from being published in
full.
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