The first organoelement oxides containing three different metals; synthesis and structure of (Ph₂SiOR₂SnOMO) [R = (CH₂)₃NMe₂; M = Bu^t₂Sn, Bu^t₂Ge, PhB][†] \ddagger

Jens Beckmann, Klaus Jurkschat,* Nicole Pieper and Markus Schürmann

Lehrstuhl für Anorganische Chemie II, Fachbereich Chemie der Universität Dortmund, D-44221 Dortmund, Germany. E-mail: kjur@platon.chemie.uni-dortmund.de

Received (in Cambridge, UK) 26th March 1999, Accepted 12th May 1999

Umpolung of ring strain by intramolecular Sn–N Lewis acid– Lewis base interaction is the key for the synthesis of the first organoelement oxides of the type (Ph₂SiOR₂SnOMO) [R = (CH₂)₃NMe₂; M = But₂Sn, But₂Ge, PhB] which hold potential as precursors to tertiary metal oxides.

Recently, we reported the syntheses and structures of stannasiloxanes such as $cyclo-R_2Si(OSnBut_2)_2O(1, R = But; 2, R =$ Ph),^{1a,b} cyclo-(Ph₂SiOR₂SnO)₂ [**3**, R = Bu^t; **4**, R = $(CH_2)_3NMe_2$],^{1b,c} cyclo-R₂Sn(OSiPh₂)₂O [**5**, R = Bu^t; **6**, R = (CH₂)₃NMe₂],^{1c,d} and of the germastannoxanes cyclo-But₂Sn- $(OGePh_2)_2O$ 7.^{1c} Such compounds are of potential interest as molecular precursors for the synthesis by ring-opening poly-merisation of inorganic polymers.^{1d,2} The stannasiloxane But₂Sn(OSiPh₂)₂O 5 contains a six-membered ring in solution but is the first well-defined polystannasiloxane in the solid state. The ring strain in 5 is the thermodynamic driving force for the polymerisation which however, is compensated in solution by entropy of a large number of monomers, i.e., six-membered rings.^{1d} In contrast, the related borasiloxane cyclo-PhB(OSi- $Ph_2)_2O 8$ is a six-membered ring both in solution and in the solid state.^{2b} The reaction of the eight-membered stannasiloxane ring cyclo-(Ph₂SiOBut₂SnO)₂ (3) with 2/3 mol equivalents cyclo- $(But_2SnO)_3$ quantitatively provided *in situ* the six-membered stannasiloxane ring Ph₂Si(OSnBut₂)₂O **2**. However, this reaction is also an equilibrium and removal of the solvent quantitatively yielded the starting compounds cyclo-(But₂SnO)₃ and 3.1b

In contrast, the reaction of the eight-membered intramolecularly coordinated stannasiloxane ring *cyclo*-(Ph₂SiOR₂SnO)₂ [**4**, R = (CH₂)₃NMe₂] with *cyclo*-(Bu^t₂SnO)₃ afforded the first *cyclo*-stannasiloxane **9** containing two different substituted tin atoms (Scheme 1).§

Furthermore, the reaction of compound **4** with di-*tert*butylgermanium dihydroxide $Bu_2^tGe(OH)_2$ and phenylboronic acid PhB(OH)₂ gave the first organoelement oxides **10** and **11**, respectively, being composed of three different metals or metalloids in the same ring (Scheme 1).§

 $[\]dagger$ Dedicated to Professor Dietmar Seyferth on the occasion of his 70th birthday.

It seems that the intramolecular Sn–N coordination increases the ring strain in the eight-membered *cyclo*-stannasiloxane **6** but decreases the ring strain in the six-membered rings **9–11**. This means, the formation of **9–11** is favoured by both enthalpy and entropy.

The molecular structures¶ of compounds 10 and 11 are shown in Fig. 1 and 2, respectively. Compound 9 is isostructural with 10. The Sn(1) atoms in 9–11 exhibit distorted octahedral configurations with the carbon atoms in mutual *trans* and the oxygen and nitrogen atoms in *cis* positions. The deviation from the ideal octahedral geometry is documented by the C(1)– Sn(1)–C(11) angles of 149.3(2)–152.30(2)° and the N(1)–Sn– N(2) angles of 105.4(1)–109.58(9)°. The O(1)–Sn(1)–O(3) angles fall in the range 90.30(8)–95.45(9)°. The intramolecular Sn–N distances in 9–11 [2.620(3)–2.764(3) Å] are shorter as compared to the Sn–N contacts in the eight-membered *cyclo*stannasiloxane 4 [2.721(4)/2.811(4) Å].^{1c} The Sn–N distances are quite different within each of the compounds 9–11. This corresponds with previous observations on the intramolecularly coordinated organotin sulfide {[Me₂N(CH₂)₃]₂SnS}_{2.}³

Compared to the ¹¹⁹Sn NMR chemical shifts in solution the ¹¹⁹Sn MAS NMR spectra of **9–11** exhibit shifts of 52.9, 30.3 and 9.5/17.8 ppm to low frequency which hints, especially for **10** and **11**, at a stronger Sn–N coordination in the solid state.

The synthetic concept introduced within this paper should also apply for the synthesis of organoelement oxides containing

Fig. 1 General view of a molecule of **10** showing 30% probability displacement ellipsoids and the atom numbering. The hydrogen atoms were omitted for clarity. Selected bond lengths (Å) and angles (°): Sn(1)–O(1/3) 2.010(2)/2.022(2), Sn(1)–N(1/2) 2.648(3)/ 2.752(3); O(1)–Sn(1)–O(3) 93.89(8), O(1)–Si(1)–O(2) 113.5(1); O(2)–Ge(1)–O(3) 109.1(1). Compound **9** is isostructural; Ge(1) is replaced by Sn(2). Sn(1)–O(1/3) 1.998(2)/2.026(2), Sn(1)–N(1/2) 2.683(3)/2.764(3); O(1)–Sn(1)–O(3) 95.45(9), O(1)–Si(1)–O(2) 114.2(1), O(2)–Sn(2)–O(3) 106.69(9).

[‡] This work contains part of the Ph.D. thesis of N. Pieper, Dortmund University 1998, and of the intended Ph.D. thesis of J. Beckmann.

Fig. 2 General view of a molecule of **11** showing 30% probability displacement ellipsoids and the atom numbering. The hydrogen atoms were omitted for clarity. Selected bond lengths (Å) and angles (°): Sn(1)–O(1/3) 2.038(2)/2.054(2) (2.017(2)/2.050(2)), Sn(1)–N(1/2) 2.620(3)/2.681(3) (2.649(3)/2.65(2)); O(1)–Sn(1)–O(3) 90.30(8)(91.75(8)); O(1)–Si(1)–O(2) 110.4(1) (112.9(1)), O(2)–B(1)–O(3) 124.2(3) (123.5(3)). The values given in parentheses refer to the second, symmetrically independent molecule of **11** in the unit cell which is not shown.

both main group elements and transition metals. Such compounds are of increasing interest as single source precursors for mixed metal oxides⁴ which find applications in heterogeneous catalysis^{5a} or for solar cells.^{5b}

We thank the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie for financial support.

Notes and references

Literature procedures were used to prepare*cyclo*-(R₂SnOSiPh₂O)₂ (**3**, R = Bu^t; ^{1b}**4**, R = (CH₂)₃NMe₂^{1c}],*cyclo*-(Bu^t₂SnO)₃^{6a} and Bu^t₂-Ge(OH)₂.^{6b}

Synthesis and selected spectroscopic data: 1,1-di-tert-butyl-3,3-bis(3-dimethylaminopropyl)-5,5-diphenyl-2,4,6-trioxa-5-sila-1,3-distannacyclohexane **9**: 1,1,5,5-tetrakis(3-dimethylaminopropyl)-3,3,7,7-tetraphenyl-2,4,6,8-tetraoxa-3,7-disila-1,5-distannacyclooctane **4** (500 mg, 0.495 mmol) and di-*tert*-butyltin oxide (246 mg, 0.330 mmol) were dissolved in chloroform (10 mL). The reaction mixture was kept at 60 °C for 12 h. The solvent was evaporated *in vacuo* and the residue recrystallised from *n*-hexane to give 271 mg (38 % yield) of **9** as colourless crystals, mp 135 °C. ²⁹Si{¹H} NMR δ -40.4 [²J(²⁹Si-O-¹¹⁹Sn) 31 Hz]; ¹¹⁹Sn{¹H} NMR δ -93.3 [²J(¹¹⁹Sn-O-^{119/117}Sn) 371 Hz], -191.7 [²J(¹¹⁹Sn-O-^{119/117}Sn) 371 Hz], -244.6. MS: *m/z*: 697 (C₂₆H₄₁N₂O₃SiSn₂+), 639 (C₂₂H₃₁N₂O₃SiSn₂+), 363 (C₂₀H₂₈O₃SiSn₂+), 206 (C₅H₁₂Sn+). Elemental analysis (%): found: C, 47.81, H, 7.18, N, 3.65. Calc. for C₃₀H₅₂N₂O₃Sn₂Si: C 47.78, H 6.95, N 3.71%. Molecular weight (CHCl₃): found.: 543 g mol⁻¹; calc. for C₃₀H₅₂N₂O₃Sn₂Si: 754 g mol⁻¹.

1,1-*di*-tert-butyl-3,3-*bis*(3-*dimethylaminopropyl*)-5,5-*diphenyl*-3-germa-2,4,6-trioxa-5-sila-1-stannacyclohexane **10**: 1,1,5,5-tetrakis(3-dimethylaminopropyl)-3,3,7,7-tetraphenyl-2,4,6,8-tetraoxa-3, 7-disila-1, 5-distannacyclooctane **4** (500 mg, 0.495 mmol) and di-*tert*-butylgermanium dihydroxide (240 mg, 1.087 mmol) were dissolved in toluene (15 mL). The reaction mixture was kept at 100 °C for 2 d. The solvent was distilled off and the residue was recrystallised from *n*-hexane to give 268 mg (36 % yield) of colourless crystals of **10**, mp. 148 °C. ²⁹Si{¹H</sup>} NMR δ –42.2 [²J(²Si-O-¹¹⁹/117Sn) 32 Hz]; ¹¹⁹Sn{¹H} NMR δ –231.6; ¹¹⁹Sn{¹H} MAS

NMR: δ - 261.9. MS: m/z: 707 (C₃₀H₅₁N₂O₃GeSiSn⁺), 650 (C₂₆H₄₂N₂O₃-GeSiSn⁺), 621 (C₂₅H₃₉NO₃GeSiSn⁺), 536 (C₂₀H₂₈O₃GeSiSn⁺), 478 (C₁₆H₁₈O₃GeSiSn⁺), 206 (C₅H₁₂Sn⁺). Elemental analysis (%): found: C, 51.09; H, 7.57; N, 3.92; calc. for C₃₀H₅₂N₂O₃GeSiSn⁻ C, 50.89; H, 7.40; N, 3.96. Molecular weight (CHCl₃): found: 657 g mol⁻¹; calc. for C₃₀H₅₂N₂O₃GeSiSn⁻ 708 g mol⁻¹.

3,3-*bis*(3-*dimethylaminopropy*)-3,5,5-*tripheny*l-3-*bora*-2,4,6-*trioxa*-5-*sila*-1-*stannacyclohexane* **11**: 1,1,5,5-tetrakis(3-dimethylaminopropy)-3,3,7,7-tetraphenyl-2,4,6,8-tetraoxa-3,7-disila-1, 5-distannacyclooctane **4** (455 mg, 0.450 mmol) and phenylboronic acid (110 mg, 0.902 mmol) were dissolved in chloroform (10 mL). The reaction mixture was kept at 60 °C for 12 h. The solvent was removed *in vacuo* and the residue was recrystallised from *n*-hexane to give 335 mg (61% yield) of colourless crystals of **11**, mp 132 °C. ²⁹Si{1H} NMR δ –38.7 [²J(19Si–O–119/117Sn) 19 Hz]; ¹¹⁹Sn{1H} NMR δ –259.1; ¹¹⁹Sn{1H} MAS NMR: δ –268.6, –276.9. MS: *m/z* 609 (C₂₈H₃₈N₂O₃BSiSn⁺), 523 (C₂₃H₂₆NO₃BSiSn⁺), 430 (C₁₇H₂₁NO₂BSiSn⁺), 206 (C₅H₁₂NSn⁺). Elemental analysis (%): found: C 55.25, H 6.85, N 4.50; calc. for C₂₈H₃₉N₂O₃BSiSn: C 55.20, H 6.45, N 4.60. Molecular weight (CHCl₃): found: 517 g mol⁻¹; calc. for C₂₈H₃₉N₂O₃BSiSn: 609 g mol⁻¹.

¹H and ¹³C NMR data for compounds **9–11** can be viewed electronically, see: http://www.rsc.org/suppdata/1999/1095/.

¶ The structures of 9-11 were refined in the triclinic space group $P\overline{1}$.

9: $C_{30}H_{52}N_2O_3SiSn_2$, $M_r = 754.21$, crystal dimensions: $0.70 \times 0.18 \times 0.15 \text{ mm}$, a = 9.302(1), b = 10.824(1), c = 17.897(1) Å, $\alpha = 81.611(1)$, $\beta = 88.994(1)$, $\gamma = 85.935(1)^\circ$, V = 1778.1(3) Å³, Z = 2, $\mu = 1.467 \text{ mm}^{-1}$, $D_c = 1.409 \text{ Mg m}^{-3}$, $D_m = 1.420(2) \text{ Mg m}^{-3}$, $2\theta_{max} = 29.61^\circ$, 21528 measured, 8738 ($R_{int} = 0.032$) independent and 5324 observed reflections with $I > 2\sigma(I)$, RI = 0.036, wR2 = 0.0748 for 355 parameters, S = 0.907, $\Delta/\rho_{max} = 0.672$ e Å⁻³.

10: C₃₀H₅₂GeN₂O₃SiSn, $M_r = 708.11$, crystal dimensions: $0.40 \times 0.20 \times 0.20$ mm, a = 9.190(1), b = 10.833(1), c = 17.730(1) Å, $\alpha = 80.144(1)$, $\beta = 89.614(1)$, $\gamma = 86.402(1)^\circ$, V = 1735.6(3) Å³, Z = 2, $\mu = 1.649$ mm⁻¹, $D_c = 1.355$ Mg m⁻³, $2\theta_{max} = 25.66^\circ$, 23559 measured, 6102 ($R_{int} = 0.035$) independent and 4234 observed reflections with $I > 2\sigma(I)$, R1 = 0.031, wR2 = 0.0604 for 355 parameters, S = 0.950, $\Delta' \rho_{max} = 0.277$ e Å⁻³.

11: C₂₈H₃₉BN₂O₃SiSn, $M_r = 609.20$, crystal dimensions: $0.20 \times 0.10 \times 0.10 \text{ mm}$, a = 10.630(1), b = 17.201(1), c = 17.300(1) Å, $\alpha = 100.001(1)$, $\beta = 90.737(1)$, $\gamma = 104.343(1)^\circ$, V = 3012.9(4) Å³, Z = 4, $\mu = 0.917 \text{ mm}^{-1}$, $D_c = 1.343 \text{ Mg m}^{-3}$, $D_m = 1.387(2) \text{ Mg m}^{-3}$, $2\theta_{\text{max}} = 25.68^\circ$, 41 109 measured, 10 578 ($R_{\text{int.}} = 0.024$) independent and 7733 observed reflections with $I > 2\sigma(I)$, R1 = 0.031, wR2 = 0.0735 for 696 parameters, S = 0.999, $\Delta/\rho_{\text{max}} = 0.442 \text{ e}$ Å⁻³.

CCDC 182/1261. See: http://www.rsc.org/suppdata/cc/1999/1095/ for crystallographic files in .cif format.

|| The unit cell of 11 consists of two independent conformers and consequently two signals are observed in the $^{119}Sn{^{1}H}$ MAS NMR spectrum.

- (a) J. Beckmann, K. Jurkschat, B. Mahieu and M. Schürmann, *Main Group Met. Chem.*, 1998, **21**, 113; (b) J. Beckmann, B. Mahieu, W. Nigge, D. Schollmeyer, K. Jurkschat and M. Schürmann, *Organometallics*, 1998, **17**, 5697; (c) J. Beckmann, K. Jurkschat, U. Kaltenbrunner, N. Pieper and M. Schürmann, *Organometallics*, 1999, **18**, 1586; (d) J. Beckmann, K. Jurkschat, D. Schollmeyer and M. Schürmann, *J. Organomet. Chem.*, 1997, **543**, 229.
- 2 (a) I. Manners, Angew. Chem., 1996, 108, 1712; (b) D. A. Foucher, A. J. Lough and I. Manners, Inorg. Chem. 1992, 31, 2034.
- 3 K. Jurkschat, S. Van Dreumel, G. Dyson, D. Dakternieks, T. J. Bastow, M. E. Smith and M. Dräger, *Polyhedron*, 1992, 11, 2747.
- 4 (a) M. Veith, S. Mathur and V. Huch, J. Am. Chem. Soc., 1996, 118, 903;
 (b) M. Veith, S. Mathur and V. Huch, Inorg. Chem., 1996, 35, 7295.
- (a) A. de Mallmann, O. Lot, N. Perrier, F. Lefebvre, C. Santini and J. M. Basset, Organometallics, 1998, **17**, 1031; (b) V. M. Jimenez, J. A. Mejias, J. P. Espinos and A. R. Gonzales-Elipe, Surf. Sci., 1996, **366**, 545.
- 6 (a) H. Puff, W. Schuh, R. Sievers, W. Wald and R. Zimmer, J. Organomet. Chem., 1984, 260, 271; (b) H. Puff, S. Franken, W. Schuh and W. Schwab, J. Organomet. Chem. 1983, 254, 33.

Communication 9/02428J