A homobimetallic vanadium d²–d² complex (Cp₂V)₂(3η:4η-Me₃SiC=C–C=C–C=CSiMe₃):structure and magnetism

Robert Choukroun,*^a Christian Lorber,^a Bruno Donnadieu,^a Bernard Henner,^b Richard Frantz^b and Christian Guerin^b

^a Equipe Précurseurs Moléculaires et Matériaux, Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, 31077, Toulouse Cedex, France. E-mail: choukrou@lcc.toulouse.fr

^b Laboratoire 'Chimie Moléculaire et Organisation du Solide', UMR CNRS 5637, Université de Montpellier, 2 Place E. Bataillon, F-34095 Montpellier Cedex 5, France

Received (in Cambridge, UK) 24th March 1999, Accepted 7th May 1999

The d²-d² homobimetallic complex $(Cp_2V)_2(3\eta; 4\eta-Me_3-SiC\equiv C-C=C-C\equiv CSiMe_3)$ was synthesized from Me_3SiC=C-C=C-C\equiv CSiMe_3 and Cp_2V and characterized by an X-ray crystal structure; magnetic moment measurements from 300 to 2 K indicated a weak antiferromagnetic J exchange coupling of -3.7 cm⁻¹.

The chemistry of transition metal alkynyl and related complexes continues to be an attractive focus, and among its differing chemical and physical properties, their potential non-linear optical properties are of interest.¹ Furthermore, a rich acetylenic chemistry has recently been described with group 4 transition metals in which the synthon 'Cp₂Zr' played an important part.² Our research group has extended this concept to group 5 with the reactive isolable vanadocene Cp₂V complex.

The remarkable oxidative addition of vanadocene Cp₂V **1** to ethynyl –C=C– bonds was demonstrated early and a vanadocyclopropene structure was established.³ In previous papers, we established that Cp₂V reacts with Cp'₂Zr(C=CPh)₂ to give Cp₂V(μ - η^2 : η^4 -C=C–C=CPh)ZrCp'₂, with a vanadacyclopropane moiety containing two planar tetracoordinated carbons on the butadiyne ligand⁴ or with the phosphane ArP(C=CPh)₂ to give the adduct Cp₂V(PhC=C)P(C=CPh)Ar.⁵ Alternatively, two Cp₂V units can be added to a diethynyl ligand RC=C–C=CR (R = SiMe₃, Ph) to give a homobimetallic V^{IV}–V^{IV} system (Cp₂V)₂(1–2 η : 3–4 η -RC=C–C=CR) where the Cp₂V units are in *cis* or *trans* positions depending on the nature of R.⁶ As such, particular attention is given to the reactivity of Cp₂V with a triyne Me₃SiC=C–C=C–C=CSiMe₃⁷ **2**, to establish a synthetic route to an ethynyl vanadium-bridged complex.

Addition of a pentane solution of **1** (2 or 3 equiv.) to **2** leads to a crystalline black solid $(Cp_2V)_2(3\eta:4\eta-Me_3SiC\equiv C-C=C-C=C=CSiMe_3)$ **3**,[†] fully characterized by an X-ray structure

determination (Fig. 1).[‡] Surprisingly, the vanadium atom has an oxidative state of +3, instead of the expected classical V^{IV} which to our knowledge has been observed in all other cases. The main feature of **3** is the bonding mode of the two vanadocene moieties which are attached to both the internal carbon atoms of the triyne *via* a single σ -type V–C(11a) bond of length 2.165 Å which raises the vanadium oxidation state from +2 to +3. The geometrical alteration of ligand **2** is reflected by the *trans* configuration of the triyne : the nearly linear –C–C≡CSiMe₃ moiety [C(11a)C(12)C(13)165.5°, C(12)C(13)Si(1)

Fig. 1 Molecular structure of **3**. Selected distances (Å) and angles (°), hydrogen atoms omitted: V–C(11a) 2.165(4), C(11a)–C(11a') 1.381(9), C(11)–C(12) 1.476(5), C(12)–C(13) 1.206(4), V…V' 5.25, V–Cp 1.947(av.); Cp–V–Cp 147.8(av.) [Cp are the centroids of the C_5H_5 rings C(1)–C(5), C(6)–C(10)].

173.2°] forms a 113.4° angle with the C(11a)C(11a') bond. The sum of the angles around C(11a) (nearly 360°) as well as the 1.381 Å bond length of C(11)–C(11a') (in accord with a double bond) indicate an sp²-ethylene structure. The SiC₆Si skeleton and the vanadium atoms are in the same plane and the dihedral angle between the plane of the Cp₂V unit (obtained from the centroids of the Cp rings and the vanadium atom) and the plane of the SiC₆Si ligand is 98.66°.

Variable-temperature magnetic susceptibility measurements have been carried out on the V^{III} homobimetallic d^2-d^2 species **3**.§ The effective moment μ_{eff} is 4.01 μ_B at 300 K, which is consistent with two vanadium(III) units ($\mu_{theor} = 2[\sqrt{\Sigma S(S + 1)}] = 4$ for two non-interacting d^2 vanadium atoms). If the two magnetically equivalent d^2 centers are totally non-interacting, then μ_{eff} should remain constant over a large temperature range. The effective moment μ_{eff} decreases to 1.51 μ_B at 2 K. Fig. 2 shows a plot of the molar susceptibility per dimer χ_m , vs. T. The solid line represents a good fit and was considered to account for the observed dependence with an exchange interaction model, having a weak antiferromagnetism with J = -3.7 cm⁻¹.⁸

When 1 equiv. of 1 was treated with only 1 equiv. of 2 in pentane, tiny brown needles were obtained. Unfortunately, efforts to obtain suitable crystals for an X-ray diffraction analysis have to date failed. Elemental analysis and magnetic

Fig. 2 Temperature dependance of molar magnetic susceptibilities per vanadium (\Box) of 3; the solid line results from a least-squares theoritical fit.

studies ($\mu_{eff} = 1.9 \ \mu_B$) are in agreement with a vanadium(IV) atom bound to **2**,[†] and a vanadocene cyclopropene structure such as Cp₂V(3–4 η^2 -Me₃SiC=C–C=C–C=CSiMe₃) **4** can be suggested. Treatment of **4** in C₆D₆ with another equiv. of **1** leads

to **3**, as revealed by ¹H NMR spectroscopy (the ¹H NMR spectrum of paramagnetic **3** in C_6D_6 consists of an observable low field broad signal of Cp at δ 124 and a well resolved Me₃Si signal at δ 1.0. A comproportionation reaction between V^{IV} (**4**) and V^{II} (**1**) to give 2V^{III} (**3**) is probably operative but a mechanistic description must await further experimental evidence.

In summary, the reaction of **1** with a triyne ligand led to a homobimetallic d^2-d^2 complex. This unexpected reactivity seems to be due to the odd parity of the number of C=C bonds in **2**.⁷ It would be interesting experimentally to test other odd-yne ligands to understand the ligand/metal effects and efforts are currently being made in this direction.

Notes and references

 \dagger Satisfactory elemental analysis results were obtained for compounds ${\bf 3}$ and ${\bf 4}.$

‡ *Crystallographic data* for **3**: C₃₂H₃₈Si₂V₂, M = 580.72, monoclinic, space group $P2_1/c$, a = 11.214(2), b = 113.778(2), c = 10.797(1) Å, $\beta = 112.72(1)^\circ$, V = 1538.76 Å³, Z = 4, $D_c = 1.66$ g cm⁻³, $\mu = 6.82$ cm⁻¹, $R(R_w) = 0.033(0.036)$ for 1719 unique data and 173 parameters, GOF = 1.08. Data collection was performed at *ca*. 180 K on a IPDS STOE diffractometer using graphite-monochromated Mo-Kα radiation. The

structure was solved by direct methods and subsequent difference Fourier maps. A disordered distribution was observed for C(11) and the best model to fit the electronic density was to consider two positions C(11a) and C(11b) with a ratio of occupancy of 0.6/0.4. CCDC 182/1256. See http://www.rsc.org/suppdata/cc/1999/1099/ for crystallographic files in .cif format.

§ Magnetic susceptibilities were determined using a SQUID susceptometer within the temperature range 2–300 K. Using a Heisenberg Hamiltonian $H = -JS_AS_B$ with the local spin $S_A = S_B = 1$, the magnetic interaction was estimated with a model for dinuclear compounds [eqn. (1)].⁹ The J and g parameters were determined by least-squares fitting. The agreement factor R [eqn. (2)] = 2.89 × 10⁻⁴. The average value of the g-factor was 1.996.

$$\chi = \frac{2N\beta^2}{kT}g^2 \frac{e^x + 5e^{3x}}{1 + 3e^x + 5e^{3x}} (x = J/kT)$$
(1)

$$R = \frac{\Sigma (\chi_{\rm m}^{\rm obs} - \chi_{\rm m}^{\rm calc})^2}{\Sigma (\chi_{\rm m}^{\rm obs})^2}$$
(2)

- 1 H. S. Nalwa and S. Miyata, Nonlinear Optics of Organic Molecules and Polymers, CRC Press, Boca Raton, FL, 1997; L. K. Myers, C. Langhoff and M. E. Thompson, J. Am. Chem. Soc., 1992, 114, 7560.
- 2 S. L. Buchwald and R. D. Broene, Comprehensive Organometallic Chemistry II, ed. E. W. Abel, F. G. Stone and G. Wilkinson, Pergamon Press, Fort Collins, vol. 12, ch. 7.4; J. A. Labinger, Comprehensive Organic Chemistry, ed. B. M. Trost and I. Fleming, Pergamon Press, New York, 1991, vol. 8, p. 667; see, for example: N. Suzuki, D. Y. Kondakov and T. Takahashi, J. Am. Chem. Soc., 1994, 116, 3431; B. P. Warner, M. Davis and S. L. Buchwald, J. Am. Chem. Soc., 1994, 116, 5471; M. R. Kesti and R. M. Waymouth, Organometallics, 1992, 11, 1095; C. Lebefer, W. Baumann, A. Tillack, R. Kempe, H. Gorls and U. Rosenthal, Organometallics, 1996, 15, 3486; H. Lang, W. Frosch, I. Y. Wu, S. Blau and B. Nuber, Inorg. Chem., 1996, 35, 6266; V. Varga, J. Hiller, M. Polasek, U. Thewalt and K. Mach, J. Organomet. Chem., 1996, 515, 57
- 3 G. Fachinetti, C. Floriani, A. Chiesi-Villa and C. Guastini, *Inorg. Chem.*, 1979, **18**, 2282; J. L. Petersen and L. Griffith, *Inorg. Chem.*, 1980, **19**, 1852.
- 4 C. Danjoy, J. Zhao, B. Donnadieu, J.-P. Legros, L. Valade, R. Choukroun, A. Zwick and P. Cassoux, *Chem. Eur. J.*, 1998, 4, 1100; R. Choukroun and P. Cassoux, *Acc. Chem. Res.*, 1999, in press.
- 5 R. Choukroun, Y. Miquel, B. Donnadieu, A. Igau, C. Blandy and J.-P. Majoral, *Organometallics*, 1999, 18, 1795.
- 6 R. Choukroun, B. Donnadieu, I. Malfant, S. Haubrich, R. Frantz, C. Guerin and B. Henner, *Chem. Commun.*, 1997, 2315.
- 7 The central C=C ethynyl bond of 2, which is more electron-rich than the other C=C ethynyl bonds may favor the reaction at the central core of the ligand; G. N. Patel, J. Polym. Sci. Polym. Phys. Ed., 1979, 17, 1591; Y. Rubin, S. S. Lin, C. B. Knobler, J. Anthony, A. M. Boldi and F. Diederich, J. Am. Chem. Soc., 1991, 113, 6943; F. Diederich, Y. Rubin, O. L. Chapman and N. S. Goroff, Helv. Chim. Acta, 1994, 77, 1441; H. D. Kalinowski, S. Berger and S. Braun, Carbon-13 NMR Spectroscopy, J. Wiley, New York, 1988; C. Guerin and B. Henner, unpublished results.
- 8 The observed magnetic behaviour could equally well arise from a noninteracting distorted monomeric vanadium(II) centre; B. N. Figgis, J. Lewis and F. E. Mabbs, *J. Chem. Soc.*, 1960, 2480; B. N. Figgis, J. Lewis, F. E. Mabbs and G. A. Webb, *J. Chem. Soc. A*, 1966, 1411; D. J. Machin and F. E. Mabbs, *Magnetism and Transition Metal Chemistry*, Chapman and Hall, London, 1973, ch. 4 and 5.
- 9 O. Kahn, Molecular Magnetism, VCH, New York, 1993, p. 114.

Communication 9/02370D