Donor complexes of bis(1-indenyl)phenylborane dichlorozirconium as isospecific catalysts in propene polymerization

Manfred T. Reetz,* Marc Willuhn, Christian Psiorz and Richard Goddard

Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim/Ruhr, Germany. E-mail: reetz@mpi-muelheim.mpg.de

Received (in Cambridge, UK) 30th March 1999, Accepted 7th May 1999

Chiral boron-bridged *ansa***-type zirconocenes can be prepared in a few simple steps; various donor molecules such as Et2O, THF or PMe3 undergo complexation at boron leading to catalysts having vastly different catalytic properties in** Ziegler-Natta polymerization of propene; the PMe₃-con**taining catalyst is the most active and stereoselective (96% isotacticity).**

The nature of substituents and the substitution pattern of titanocenes and zirconocenes are known to exert a pronounced influence on their activity and selectivity as catalysts in Ziegler– Natta polymerization.1 Recently, several zirconocenes borylated at the Cp-moiety have been prepared and tested as catalysts.2,3 None of them showed activity in the polymerization of propene, and some even failed to polymerize ethene,³ possibly due to decomposition caused by the co-catalyst methylalumoxane (MAO) which is generally required as an activator. Here, we describe the synthesis of donor-coordinated *ansa*-type zirconocenes **1** and their use as catalysts in the

production of polypropene (PP). Significantly, it turns out that the nature of the donor ligand L determines the activity and stereoselectivity of the catalytic system, *i.e.* it can be used as a handle to control the polymerization.

The starting point for the synthesis of zirconocenes **1** was bis(1*H*-inden-1-yl)phenylborane **4**, readily accessible as a 1:1 mixture of *rac*- and *meso*-stereoisomers by the reaction of dichlorophenylborane **2** with indenyllithium **3** (Scheme 1). Although it was possible to convert **4** into the corresponding dianion by treatment with lithium bis(trimethylsilyl)amide (LiHMDS),4 at least 20% of indenyllithium **3** was formed as an undesired side-product. This problem was solved by first isomerizing **4** into the thermodynamically more stable compound **5** in 95% yield by the action of catalytic amounts of PPri 3 and then effecting double deprotonation. Upon reacting $ZrCl₄$ with the intermediate dianion, a 1 : 1 mixture of *rac*-**1a** and *meso*-**1a** as well as non-identified side-products were formed.

Following removal of solid components, the solution was cooled to -20 °C, from which diastereomerically pure *rac*-1a crystallized as an orange–red solid in 12% yield. It was unambiguously characterized by ¹H, ¹¹B and ¹³C NMR spectroscopy. Treatment of *rac*-**1a** with a solvent mixture of THF and CH_2Cl_2 led to the formation of *rac*-1b whereas the reaction with PMe₃ in toluene afforded adduct *rac*-**1c**. In both cases it was possible to obtain crystals suitable for an X-ray structural analysis (Fig. 1).† It should be mentioned that a different boron-bridged zirconocene has been described previously, but it was not possible to obtain crystals for an X-ray structural analysis, nor did it show activity towards ethene polymerization.³ PMe₃ has been used to form adducts with other borylated metallocenes.2*^c* The present *C*1-symmetric

compounds are structurally similar. In the case of *rac*-**1b** the angle between zirconium and the center of the two fivemembered rings is $122.3(8)^\circ$ (mean), which lies between that of the known $Me₂C$ -bridged bis(indenv1) $dichlorozirconium$ $(118.2^{\circ})^5$ and that of the Me₂Si-bridged analog (127.8°) .⁶ For *rac*-**1c** this angle was found to be 121.5(7)°, similar to that in *rac*-**1b**. Nevertheless, the Zr···B–O angle in *rac*-**1b** $[120.4(6)°]$ is significantly smaller than the Zr···B–P angle in *rac*-**1c** $[131.3(2)°]$.

In order to test the complexes in olefin polymerization, activation by treatment with MAO in toluene for 5 min was performed in all cases. Although compound *rac*-**1a** was found to be a fairly active catalyst $(200-2600 \text{ kg PE mol}[Zr]^{-1} \text{ h}^{-1})$

Scheme 1 *Reagents and conditions*: i, Et₂O, -70 to 20 °C, 12 h (75-85%); ii, PPrⁱ₃ (2 mol%), Et₂O, 20 °C, 16 h (85%); iii, (*a*) LiHMDS (2.05 equiv.), Et₂O, -70 to 20 °C, 10 h; (*b*) ZrCl₄ (1 equiv.), toluene–Et₂O, -70 to 20 °C, 12 h; iv, THF–CH₂Cl₂ (1:1); v, PMe₃ (7 equiv.), toluene, -70 to 20 °C (21%).

Fig. 1 Molecular structures of *rac*-**1b** (left) and *rac*-**1c** (right). Selected interatomic distances (A) and angles $(°)$: left (mean of two independent molecules): Zr···B 3.117(8), B–O 1.626(4), B–C3 1.603(5), Cl1–Zr–Cl2 99.5(3), D1–Zr–D2 122.3(8), Zr···B–O 120.4(6), Zr···B–C3 132.1(3), O–B– C3 107.5(2), C1–B–C2 101.5(2); right: Zr···B 3.173(3), B–P 2.006(3), B– C3 1.618(4), Cl1–Zr–Cl2 96.58(3), D1–Zr–D2 121.5(7), Zr···B–P 131.3(2), Zr···B–C3 126.7(4), P–B–C3 102.0(2), C1–B–C2 99.4(2).

Table 1 Polymerization of propene with *rac*-**1c** in toluene as solvent and MAO as activator*a*

T /°C	Al:Zr	Productivity/kg	PP mol[Zr] ⁻¹ h ⁻¹ 10 ⁻³ $M_{\rm w}/g$ mol ⁻¹	Tacticity $(%$ mmmm- pentades)
20	1000	326	315	96
40	220	783	161	93
40	1000	1052	129	90
40	5000	1232	97	93
60	1000	174	62	85
<i>a Polymerization conditions:</i> 2 bar propene, 1 h, <i>ca.</i> 30 μ mol l ⁻¹ [Zr].				

for ethene polymerization producing high molecular weight polymer ($M_w \approx 700000$ g mol⁻¹ as determined by GPC), this complex turned out to be a rather poor catalyst for the polymerization of propene. For example, using a Al/Zr ratio of 1000, activities of only 10–75 kg PP mol $[\text{Zr}]^{-1}$ h⁻¹ were observed at room temperature with the production of atactic oily PP ($M_w \approx 20000$ g mol⁻¹). In contrast, the phosphine adduct *rac*-**1c** displayed remarkably high activity and stereoselectivity (Table 1). 13C NMR spectra of typical PP samples obtained at various polymerization temperatures demonstrate high degrees of isotacticity, *e.g.* 96% isotacticity at room temperature.

Thus, complex *rac*-**1c** is the first boron-bridged zirconocene which catalyzes the polymerization of propene. It competes well with other *ansa*-type zirconocenes, especially with respect to isotacticity and molecular weight.5,6 Since the ether analog *rac*-**1a** is a poor catalyst, it is obvious that the nature of the donor ligand at boron is crucial. A possible explanation is that for *rac*-**1a** excess MAO induces decomplexation of the donor ligand, thereby initiating the decomposition of the *ansa*metallocene, whereas for *rac*-**1c** the donor ligand PMe₃ remains bonded to boron throughout the polymerization. Whatever the exact explanation may be, it is clear that the use of $PMe₃$ provides a handle to control activity and tacticity. It remains to be seen whether other phosphines or different donor ligands induce similar effects.

Notes and references

 \uparrow *Crystal data: rac*-1b: C₂₈H₂₅BCl₂OZr, $M_r = 550.41$, orange prism, crystal size $0.28 \times 0.32 \times 0.49$ mm, $a = 10.746(1), b = 15.510(3), c =$ 16.308(3) Å, $\alpha = 62.15(1)$, $\beta = 82.92(1)$, $\gamma = 83.25(1)$ °, $U = 2379.2(7)$ Å³, *T* = 293 K, triclinic, space group $P\overline{1}$ (no. 2), *Z* = 4, *D_c* = 1.54 g cm⁻³, $\mu = 0.71$ mm⁻¹. Enraf-Nonius CAD4 diffractometer, Mo-K α X-radiation, λ = 0.71069 Å. 11215 measured reflections, no absorption correction, 10815 unique, 8006 observed $[I > 2.0\sigma(F_0^2)]$. The structure was solved by

direct methods (SHELXS-97) and refined by full-matrix least-squares (SHELXL-97) on F^2 for all data with Chebyshev weights to $R = 0.038$ (obs.), $wR = 0.105$ (all data), 595 parameters, $S = 1.02$, H atoms riding, max. shift/error 0.001, residual $\rho_{\text{max}} = 0.775 \text{ e A}^{-3}$. CCDC 000/000.

rac-**1c**: $C_{27}H_{26}BCl_2PZr$ -2.5CH₂Cl₂, $M_r = 766.69$, orange prism, crystal size $0.18 \times 0.32 \times 0.32$ mm, $a = 33.5561(8)$, $b = 10.9508(2)$, $c =$ 20.6866(6) Å, $\beta = 121.201(2)$ °, $U = 6502.1(3)$ Å³, $T = 100$ K, monoclinic, space group *C*2/*c* (no. 15), $Z = 8$, $D_c = 1.57$ g cm⁻³, $\mu = 0.98$ mm⁻¹. Siemens SMART diffractometer, Mo-K α X-radiation, $\lambda = 0.71073$ Å. 34678 measured reflections, no absorption correction, 11860 unique, 8996 observed $[I > 2.0\sigma(F_0^2)]$. The structure was solved by direct methods (SHELXS-97) and refined by full-matrix least-squares (SHELXL-97) on *F*2 for all data with Chebyshev weights to $R = 0.062$ (obs.), $wR = 0.137$ (all data), 357 parameters, $S = 1.13$, H atoms riding, max. shift/error 0.001, residual $\rho_{\text{max}} = 2.678 \text{ e A}^{-3}$ (0.789 Å from Cl6 in solute).

CCDC 182/1257. See http://www.rsc.org/suppdata/cc/1999/1105/ for crystallographic files in .cif format.

- 1 Reviews: *Ziegler Catalysts: Recent Scientific Innovations and Technological Improvements*, ed. G. Fink, R. Mülhaupt and H. H. Brintzinger, Springer, Berlin, 1995; M. Bochmann, *J. Chem. Soc*., *Dalton Trans*., 1996, 255; H.-H. Brintzinger, D. Fischer, R. Mülhaupt, B. Rieger and R. Waymouth, *Angew. Chem*., 1995, **107**, 1255; *Angew. Chem*., *Int. Ed. Engl*., 1995, **34**, 1143; see also: L. Resconi, F. Piemontesi, I. Camurati, O. Sudmeijer, I. E. Nifant'ev, P. V. Ivchenko and L. G. Kuz'mina, *J. Am. Chem. Soc*., 1998, **120**, 2308; I.-M. Lee, W. J. Gauthier, J. M. Ball, B. Iyengar and S. Collins, *Organometallics*, 1992, **11**, 2115.
- 2 (*a*) M. T. Reetz, H. Brümmer, M. Kessler and J. Kuhnigk, *Chimia*, 1995, **49**, 501; (*b*) M. Bochmann, S. J. Lancaster and O. B. Robinson, *J. Chem. Soc*., *Chem. Commun*., 1995, 2081; (*c*) D. S. Stelck, P. J. Shapiro, N. Basickes and A. L. Rheingold, *Organometallics*, 1997, **16**, 4546: (*d*) R. Duchateau, S. J. Lancaster, M. Thornton-Pett and M. Bochmann, *Organometallics*, 1997, **16**, 4995; (*e*) S. J. Lancaster, M. Thornton-Pett, D. M. Dawson and M. Bochmann, *Organometallics*, 1998, **17**, 3829; (*f*) J. Ruwwe, G. Erker and R. Fröhlich, *Angew. Chem*., 1996, **108**, 108; *Angew. Chem., Int. Ed. Engl*., 1996, **35**, 80.
- 3 K. A. Rufanov, V. V. Kotov, N. B. Kazennova, D. A. Lemenovskii, E. V. Avtomonov and J. Lorberth, *J. Organomet. Chem*., 1996, **525**, 287; K. Rufanov, E. Avtomonov, N. Kazennova, V. Kotov, A. Khvorost, D. Lemenovskii and J. Lorberth, *J. Organomet. Chem*., 1997, **536**–**537**, 361; personal communication from K. A. Rufanov to M. Willuhn, 1997.
- 4 For the use of weakly nucleophilic bases for the deprotonation of cyclopentadienyl- and indenyl-boranes see also: G. E. Herberich and A. Fischer, *Organometallics*, 1996, **15**, 58; G. E. Herberich, E. Barday and A. Fischer, *J. Organomet. Chem*., 1998, **567**, 127; E. Barday, B. Frange, B. Hanquet and G. E. Herberich, *J. Organomet. Chem*., 1999, **572**, 225.
- 5 A. Z. Voskoboynikov, A. Y. Agarkov, E. A. Chernyshev, I. P. Beletskaya, A. V. Churakov and L. G. Kuz'mina, *J. Organomet. Chem.*, 1997, **530**, 75.
- 6 W. A. Herrmann, J. Rohrmann, E. Herdtweck, W. Spaleck and A. Winter, *Angew. Chem*., 1989, **101**, 1536; *Angew. Chem., Int. Ed. Engl*., 1989, **28**, 1511.

Communication 9/02543J