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Synthesis, resolution and racemization study of helically twisted o-terphenyls
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The synthesis, resolution and racemization studies of helical
o-terphenyls, useful chiral building blocks are reported.

Understanding of the structure–chiroptics relationships of
helical molecules is of theoretical and synthetic importance.
Systematic distortion of helical aromatic systems by dis-
turbance of the conjugated p-electron array,1 from conforma-
tionally rigid helicences2 (e.g. 1a) to less rigid helically twisted

o-terphenyl (e.g. 1b),3 provides a useful way to gain knowledge
about chiroptics of organic molecules. In order to gain further
insight into the chiroptical properties of the helical o-terphenyl
system, o-terphenyls 2, 3 and 4, which are structurally related to
o-terphenyl 1b, were chosen for study. Compounds 24 and 35

contain the same o-terphenyl moiety as 1b but it is bridged by
two ethylene or propylene units, respectively. Little is known
about the resolution and chiroptical properties of bridged helical
o-terphenyls such as 2 and 3. Considering the similarity in p-
conjugation, it occurred to us that, if resolvable and stable,
optically pure bridged o-terphenyl derivatives would have a
high optical activity as [5]helicene does. Moreover, these o-
terphenyl derivatives are advantageously more soluble than
fully aromatized helicenes and can be made on a large scale
from readily available starting materials through a non-
photocyclization route.4 We recently introduced the nitro,
amino and isocyanato groups into o-terphenyl 2 at the C-1 (e.g.
47a) and C-3 positions6,7 and obtained several polymers using
functionalized 2.7a,d,e Therefore, resolved o-terphenyls 2–4
would be valuable building blocks for making optically active
compounds and polymers. To resolve these o-terphenyl deriva-
tives, chemical and chromatographic resolutions and recrystal-
ization were attempted. Chemical resolution of 4 was achieved
using brucine.8 Since dextrorotatory [5]helicene has P helicity,9
this resolved laevorotatory helical o-terphenyl 4 should have M
helicity. Attempted on chemical resolution of 2 using the same

route was unsuccessful, as the corresponding acid ethyl ester
had no optical activity. Chromatographic separation using a
chiral column was attempted for compounds 2, 3 and 4.10

Racemic 4 could be readily resolved by this means. However,
anhydride 2 came out as a single peak under the same
chromatographic conditions using different solvent systems.
Surprisingly, compound 3 gave two well-resolved peaks and the
M enantiomer was obtained in high optical purity. 

The resolved (M)-4 showed very large specific optical
rotations (e.g. 21518 at 589 nm and 27100 at 436 nm),
comparable to that of (M)-[5]helicene (21670 at 589 nm and
24950 at 436 nm, Table 1). Its CD spectrum [Fig. 1(a)] shows
a strong negative band near 370 nm and a positive peak around
290 nm. In comparison with (M)-4, the resolved 3 displayed a
rather low optical rotation (255 at 589 nm). The striking
difference in optical rotation between 3 and 4 is believed to be
mainly due to variation in the degree of p-electron delocaliza-
tion within the terphenyl moiety. Calculations have shown that
optical rotations of helically twisted aromatic systems depend
largely on the extended p-electron conjugation.11 There is only
a slight change in the geometry of the terphenyl moiety going
from ethylene linkages in 4 to propylene linkages in 3, as
indicated by the X-ray structure analyses. The terphenyl unit in
4 is quite planar, the nitrobiphenyl unit being twisted by 37.4°
and the other biphenyl being twisted by 29.1° (Fig. 2).12

However, the biphenyl moiety in 3 has a large twist of 58°,
indicating that the p-electrons of the terphenyl unit in 3 are less
delocalized than those in 4. Similarly, resolved 1b was reported
to have an optical rotation of 3210 at 365 nm and a smaller twist
angle of about 47.8°. The UV-VIS spectra [Fig. 1(b)] of 2 and
4 display two strong peaks near 365 and 285 nm, whereas 3 had
two bands centered at 330 and 270 nm. These absorption data
further confirm a decrease in p-electron conjugation from 4 to
3. Thus, the p-electron conjugation in the helically twisted o-
terphenyl system directly relates to the strength of the optical
rotation at a given wavelength. The greater the conjugation, or
the smaller the twist angle is, the higher the optical rotation. 

Thermal racemization studies were carried out at 49.8 °C
(±0.1 °C) for (M)-4, and at 22.0 °C (±0.1 °C) for resolved 3. The
results are listed in Table 1, together with those of 1a and 1b for
comparison. The half-life (t1/2) of racemization at 49.8 °C was
determined to be 2340 min for (M)-4, longer than that (62.7 min
at 57 °C) of (M)-[5]helicene (1a).2 Accordingly, the racemiza-
tion barrier for compound (M)-4 (27.7 kcal mol21) is higher
than that (23.5 kcal mol21) of [5]helicene. As the lower
helicenes racemize faster than higher ones,2d,13,14 helical o-
terphenyls having a substituent larger than hydrogen at the inner
C1-position are expected to have an increased barrier for

Table 1 Specific optical rotations and racemization half-life times (t1/2) of
resolved helical o-terphenyls and [5]helicene

Compound Helicity [a]589 [a]546 [a]436 t1/2/min

3 M 255 294 2349 1100 (22.0 °C)
4 M 21518 21998 27100 2340 (49.8 °C)
1a M 21670 22025 24950 62.7 (57.0 °C)
1b M 23210a 243.4 (100 °C)
a At 365 nm, 20 °C.
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thermal racemization, which allows for effective resolution.14

The X-ray structure of 4 shows a substantial overlapping
between the nitro group and the opposite benzene ring. For
compound 2, although the terphenyl unit adopts a helical
conformation and has a higher degree of p-conjugation (smaller
twist angle of 32.4°) than compound 3, the degree of
overlapping between the two terminal benzene rings is probably
too small to allow for resolution at ambient temperatures.
Comparing compounds 2 and 3, the former is conformationally
unstable and racemizes rapidly at ambient temperatures. Owing
to two extra CH2 units, 3 has the two terminal rings overlapped
to a great enough extent to allow for resolution but still easily
racemizes with a half-life time of 1100 min at 22 °C. In
comparison, 1b was successfully resolved and had a racemiza-
tion activation energy of about 30 kcal mol21, which is close to

that (27.7 kcal mol21) of 4 and higher than that (23.5
kcal mol21) of 1a.

In conclusion, chemical resolution of the bridged C1-
substituted helical o-terphenyls can be achieved. The racemiza-
tion barrier depends on the degree of overlapping of the two
terminal rings and optical activity relates to the degree of p-
conjugation of the o-terphenyl moiety.
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Fig. 1 (a) CD spectrum of (M)-4 and (b) UV-VIS spectra of 2–4.

Fig. 2 Molecular geometry of 4 determined by X-ray analysis (ref. 12).
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