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Mg0-promoted selective C–F bond cleavage of trifluoromethyl ketones: a
convenient method for the synthesis of 2,2-difluoro enol silanes
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2,2-Difluoro enol silyl ethers were readily prepared by Mg0

promoted selective defluorination of trifluoromethyl ketones
in the presence of  TMSCl, which involves C–F bond
cleavage.

Difluoro enol silyl ethers are synthetic equivalents of enolates
of a,a-difluoro ketones and useful synthons for difluoro
compounds, which provide a wide repertoire of bioactive
fluorinated compounds.1 One of the well-established methods
for preparing difluoro enol silyl ethers is dehalogenation from
halodifluoromethyl groups.2 Selective defluorination of the
trifluoromethyl group is a promising method for preparing
difluoro compounds due to the broad and easy availability of
trifluoromethylated compounds. However, there are very few
successful cases of the selective demonofluorination from a
trifluoromethyl group.3–7 Recently, we have reported electro-
reductive methods for difluoro enol silyl ethers8 and difluoro
enamines9 using trifluoromethyl ketones and imines as starting
materials. A key feature of these methodologies is the
selectivity of defluorination which derives from the higher
reduction potentials of the product enols and enamines than
those of the parent keto systems.8 Here, we report the first
successful Mg0-promoted selective defluorination of trifluoro-
methyl ketones 1 in the presence of TMSCl by means of a
process involving C–F bond cleavage [eqn. (1)],10 which
provides a highly efficient access to a variety of 2,2-difluoro
enol silyl ethers.

The reaction procedure is very simple. The mixture of 1a (6.0
mmol), TMSCl and Mg11 (12 mmol) in 2.4 ml of anhydrous
THF was stirred at 0 °C for 20 min [eqn. (2)].† After filtration,
the difluoro enol silyl ether 3a was obtained in 91% NMR
yield.

Compared to previously available methods, this methodology
has several advantages: (i) the starting trifluoromethylated
materials are readily available directly from trifluoroacetates;
(ii) Mg as a reducing agent is cheap and easy to handle; and (iii)
selective formation of 2,2-difluoro enol silyl ethers is achieved
in a short reaction time.

As shown in Table 1, the same procedure for the selective
formation of 3 works well for a diverse group of aromatic,
heteroaromatic and aliphatic ketones, and the over-reduction
products were not detected.

In the cases of aromatic and heteroaromatic ketones 1a–f, the
reactions were completed within 25 min at 0 °C in THF (entries
1–6), as compared with the case of aliphatic ketones (1g and 1h)
which required DMF as a solvent (entries 7 and 8).12 Also,

aromatic and heteroaromatic ketones 1a–f generally gave good
yields, and the presence of electron-withdrawing and -donating
groups had little effect on the yields. Notably, CF3-arene and
Cl-arene functionalities were compatible with the present
reaction conditions; the reductive cleavage of the benzylic C–F
bond13 or aromatic C–Cl bond14 did not occur (entries 3 and
4).

The formation of 3 can be explained by assuming the
pathway pictured in Scheme 1. Initially, the intermediate ketyl
species 4 is generated in the reaction of Mg0 with a ketone 1,
which is further reduced to anion species 5 by Mg. The resultant
b-fluorinated organomagnesium species 5 readily undergoes b-
elimination to form 2. In general, the cleavage of a C–F bond is
not easy due to the large bond energy (ca. 552 kJ mol21).
However, the bond breaking does occur rather easily when the
CF3 group is attached to a p-system because electron ac-
ceptance into the carbonyl group and subsequent extrusion of
the fluoride ion may make large contributions to the driving
force of the reaction. The reduction potential of aromatic
ketones (1a–f) is more negative than that of aliphatic ones (1g
and 1h). Therefore, the difference in reactivity between
aromatic ketones and aliphatic ones may derive from the
tendency to form ketyl anion species 3.

In particular, utilization of 2,2-difluoro enol silanes 3 is made
in aldol reactions.7 After simple filtration of the metal waste, the
crude products 3 were used directly in the next reaction without

Table 1 Mg0-promoted defluorinative silylation of trifluoromethyl ketones
1a

Entry 1 R T/°C t/min
Product
3

Yieldb

(%)

1 1a Ph 0 20 3a 91
2 1b 4-MeOC6H4 0 20 3b 89
3 1c 4-CF3C6H4 0 20 3c 87
4 1d 4-ClC6H4 0 20 3d 98
5 1e 2-furyl 0 25 3e 97
6 1f 2-thienyl 0 25 3f 97
7c 1g C6H13 0 30 3g 56
8c 1h Cy 0 30 3h 62
a Unless otherwise stated, the reactions were performed on a 0.6 mmol
scale in THF. b NMR yield, which was calculated by 19F NMR integration
of product 3 relative to 1,3-bis(trifluoromethyl)benzene internal standard.
c DMF was used as solvent, and 8 equiv. of Mg was used.

Scheme 1
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purification due to the instability of 3. When benzaldehyde was
added to a solution of 3a and TiCl4 at 278 °C, the aldol adduct
7a was formed [eqn. (3)] in 71% isolated yield (from 1a).

In conclusion, Mg0-promoted selective defluorination of a
series of trifluoromethyl ketones provides a promising route to
difluoro enol silanes.

We thank the SC-NMR laboratory of Okayama University
for 19F NMR analysis and the Ministry of Education, Science,
Sports and Culture of Japan for financial support (Grant-in-Aid
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argon atmosphere, trifluoroacetophenone (1.04 g, 6.0 mmol) was added
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