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A multivalent polymer of vancomycin, synthesized via ring-
opening metathesis polymerization (ROMP), exhibited sig-
nificant enhancement of antibacterial activity against
vancomycin-resistant enterococi (VRE).

The history of the fight against infectious bacteria centers
around the recurring problem of drug resistance. For example,
the evolution of MRSA (methicilin-resistant Staphylococcus
aureus), which resists almost all established antibiotics, is now
a serious worldwide problem. Currently the only viable
treatment for MRSA is vancomycin. However, VRE (vancomy-
cin resistant enterococci) has emerged, and the possibility of
this resistance being transferred to S. aureus is a cause of major
concern.1 Although much effort has been put forth to locate new
antibiotics, no alternatives to vancomycin-class glycopeptides
have been found. Thus, novel strategies to modify the
glycopeptides to enhance their potency against VRE are in great
demand.

We have been interested in the rapidly growing molecular
design principle of multivalent or cluster effects for the
enhancement of weak non-bonding interactions.2,3 Although
successful applications of this concept with sugar ligands have
been reported, it has not been further generalized to the
recognition of complex natural products or peptides.4 Vanco-
mycin binds to the d-Ala-d-Ala residue of the pentapeptide
terminal of a bacterial biosynthetic intermediate through five
hydrogen bonds.5 Since this binding interferes with bacterial
peptidoglycan biosynthesis, it is widely believed that strength-
ening the association could enhance antibacterial activity. We
describe herein our preliminary attempts to enhance the potency
of vancomycin-class antibiotics against VRE by the formation
of vancomycin-based polymers (Fig. 1).

Vancomycin contains a variety of functional groups sensitive
to basic, acidic and oxidative conditions,6,7 which necessitates
careful consideration of strategies for both the modification and
polymerizations steps. We chose to pursue a ring-opening
metathesis polymerization (ROMP) approach. Among the
known ROMP catalysts, Grubb’s ruthenium catalyst8 appeared
to be well suited, as it is tolerant to polar functional groups, and
applications to sugars and protected oligopeptides have ap-
peared. However, deactivation of the catalyst by free amino
groups has been demonstrated, and the functional group
tolerance of the catalyst to primary amide, carboxylic acids, and
phenols has not been fully established.9

Transformation of vancomycin to a ROMP monomer was
accomplished as shown in Scheme 1. An aromatic aldehyde,
which was linked to the metathesis-active norbornene unit, was
appended onto vancomycin by  regioselective reductive amina-
tion.10 1H NMR and MALDI-TOF mass spectroscopy (m/z
1757, M + 1) data11 were consistent with the structure of
monomer unit 1. The regioselectivity for the amino-sugar
portion over the N-terminal secondary amine was further
established through a fragmentation analysis of a PSD experi-
ment on the MALDI-TOF mass spectra (m/z 617, average mass,
see Scheme 1).

The ring-opening metathesis polymerization was investi-
gated under two different sets of conditions. When the
polymerization was conducted in aqueous emulsion condi-

Fig. 1 Schematic presentation of the interaction of a vancomycin polymer
with a bacterial cell wall biosynthesis intermediate. Scheme 1

Chem. Commun., 1999, 1361–1362 1361



tions,12 the reaction was slow and the yield of polymer was only
4%. A significant improvement was observed with MeOH as
the solvent in the standard homogeneous system. After 1.5 days
reaction time, removal of unreacted monomer and catalyst by
reversed phase column chromatography (Cosmosil 75C18-OPN,
MeCN–H2O = 1+2, 1% TFA) afforded 60% yield of polymeric
material 3.13 Polymerization was evidenced by broadened
signals in the 1H NMR spectra, as well as the disappearance of
the norbornene olefinic proton signals. Polymer formation was
also monitored by SDS-PAGE electrophoresis, which indicated
the difference in molecular weight distribution of the two
reactions (Fig. 2).

Antibacterial activities of monomer 1 and polymers 2 and 3
were thus evaluated (Table 1). The antibacterial properties of
vancomycin were not affected by introduction of the norbor-
nene unit present in 1. In contrast, polymerization of 1 to 3
resulted in a significant (8 to 60 fold) enhancement of potency
agaisnt VREs, with retention of practical MIC values against S.
aureus and Enterococci. The reason for the marked differences
in potency between 2 and 3 is not clear at this stage, but may be
due either to the polymer weight distributions or to the
substructural difference of each polymer. These results suggest

that polyvalent polymers may be promising tools in the fight
against multi-resistant bacteria.

In conclusion, we have prepared multivalent polymers of
vancomycin that displayed significant antibacterial activity
enhancement against VRE. Further efforts towards the under-
standing of this enhancement will be reported in due course.
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Fig. 2 Electrophoresis of compounds 1–3 [16% Tris–Tricine SDS–
polyacrylamide gel (silver stained)]: lane 1 = monomer 1; lane 2 =
polymer 3; lane 3 = polymer 2.

Table 1 Antibacterial activities of compounds 1–3

MIC/mg ml21

Compound S. aureusa
Entero-
coccusb

VRE
(Van A)c

VRE
(Van B)d

VCM 0.2 < 0.5 > 250 125
1 0.2 < 0.5 > 250 125
2 — 31 > 250 31
3 2.3 2 31 2
a Mean of six strains of S. aureus, which include clinically isolated
MRSA. b Enterococcus faecalis. c NCB40. d RV1.
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