Catalytic radical acetylation of adamantanes with biacetyl by a cobalt salt under atmospheric dioxygen

Arata Kishi, Susumu Kato, Satoshi Sakaguchi and Yasutaka Ishii*
Department of Applied Chemistry, Faculty of Engineering and High Technology, Research Center, Kansai University, Suita, Osaka 564-8680, Japan. E-mail: ishii@ ipcku.kansai-u.ac.jp

Received (in Cambridge, UK) 24th March 1999, Accepted 11th June 1999

Exposure of a mixture of adamantane and biacetyl under O_{2} in the presence of $\mathrm{Co}(\mathrm{OAc})_{2}(0.1 \mathrm{~mol} \%)$ in AcOH led to 1-acetyladamantane (47\%) and 1,3-diacetyladamantane (20\%) as major products along with small amounts of adamantan-1-ol (4\%) and adamantan-2-one (3\%).

The introduction of an acyl group to alkanes is one of the most difficult transformations in organic synthesis. Until recently, there have been a few reports on the acetylation of cycloalkanes under irradiation of light or by using a radical initiator such as benzoyl peroxide. ${ }^{1-4}$ Although the catalytic acetylation of alkanes is of interest and would be more useful in organic synthesis, such a method has not yet been developed. Here, we report the first successful catalytic radical acetylation of adamantanes using biacetyl as an acetylating agent by a cobalt salt under O_{2} atmosphere [eqn. (1)].

4

Table 1 shows the results for the acetylation of adamantane $\mathbf{1}$ with biacetyl under various conditions. \dagger The acetylation of $\mathbf{1}$ with biacetyl in the presence of $\mathrm{Co}(\mathrm{OAc})_{2}(0.1 \mathrm{~mol} \%)$ and $\mathrm{O}_{2}(1$ atm) in AcOH at $60^{\circ} \mathrm{C}$ for 2 h gave 1-acetyladamantane 2 (47%), 1,3-diacetyladamantane $\mathbf{3}$ (20\%) and 3-acetylada-
mantan-1-ol 4 (6\%) along with several oxygenated products such as adamantan-1-ol 5 (4\%) and adamantan-2-one 6 (3\%) (run 1). Photoacetylation of $\mathbf{1}$ with biacetyl is reported to form 2 in 13.8% under N_{2} and 40% under O_{2}, but no diacetyl compound $\mathbf{3}$ is formed. ${ }^{1}$ Therefore, our reaction provides an efficient catalytic method for the synthesis of acetyl derivatives of $\mathbf{1}$ which are technically interest compounds. When the acetylation was carried out for $4 \mathrm{~h}, \mathbf{3}$ was obtained in preference to 2 (run 2). Among the solvents examined, AcOH was found to be the best solvent (runs 3 to 5). From the mechanistic point of view, it is important to note that no reaction takes place when a $\mathrm{Co}^{\mathrm{III}}$ ion was employed in place of the $\mathrm{Co}^{\mathrm{II}}$ ion (run 6). The reaction proceeded smoothly even in the presence of a very small amount $(0.01 \mathrm{~mol} \%)$ of $\mathrm{Co}(\mathrm{OAc})_{2}$ or $\mathrm{Co}(\mathrm{acac})_{2}$ at $80^{\circ} \mathrm{C}$ to give $\mathbf{2}$ and $\mathbf{3}$ in satisfactory yields (runs 7 to 9). When the amount of biacetyl was reduced to half (3 equiv.) so that the concentration of biacetyl was halved with respect to O_{2}, the selectivity to 2 decreased and the amount of partly oxygenated 4 increased (run 10). In the absence of biacetyl, however, no reaction took place and the starting $\mathbf{1}$ was recovered unchanged (run 11). This fact shows that the aerobic oxidation of $\mathbf{1}$ is also induced by the presence of biacetyl. The reaction did not take place either in the presence of hydroquinone ($0.1 \mathrm{~mol} \%$) or in the absence of O_{2} (runs 12 and 13). These observations strongly suggest that a radical chain process is involved in the present acetylation, and that molecular oxygen is an essential component to promote the acetylation. Indeed, adamantyl radical, generated in situ from 1-bromoadamantane (3 mmol) by the action of $\mathrm{Bu}_{3} \mathrm{SnH}(3.6 \mathrm{mmol})$ and AIBN $(0.3 \mathrm{mmol})$ in AcOH $(3 \mathrm{ml})$ reacted with biacetyl $(18 \mathrm{mmol})$ and $\mathrm{O}_{2}(1 \mathrm{~atm})$ at $80^{\circ} \mathrm{C}$ for 4 h to form $\mathbf{2}$ and 5 in 5 and 4% yields, respectively, although it abstracted more easily the hydrogen atom from the $\mathrm{Bu}_{3} \mathrm{SnH}$ to give $1(39 \%)$ as the major product. The reaction using benzil in place of biacetyl resulted in the recovery of the starting materials (run 14). \ddagger

Table 1 Acetylation of 1 with biacetyl catalyzed by metal salts ${ }^{a}$

					Yield	(\%)			
Run	Metal salt (mol\%)	Solvent	t / h	Conversion (\%)	2	3	4	5	6
1	$\mathrm{Co}(\mathrm{OAc})_{2}(0.1)$	AcOH	2	94	47	20	6	4	3
2^{b}	$\mathrm{Co}(\mathrm{OAc})_{2}(0.1)$	AcOH	4	99	22	37	10	2	4
3	$\mathrm{Co}(\mathrm{OAc})_{2}(0.5)$	AcOH	2	> 99	10	30	11	1	4
4	$\mathrm{Co}(\mathrm{OAc})_{2}(0.5)$	$\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$	2	65	51	4	trace	2	3
5	$\mathrm{Co}(\mathrm{OAc})_{2}(0.5)$	MeCN	2	2	trace	-	-	1	trace
6	$\mathrm{Co}(\mathrm{acac})_{3}(0.1)$	AcOH	2	no reaction					
$7{ }^{\text {c }}$	$\mathrm{Co}(\mathrm{OAc})_{2}(0.01)$	AcOH	4	98	21	35	9	2	5
$8{ }^{\text {c }}$	$\mathrm{Co}(\mathrm{acac})_{2}(0.01)$	AcOH	4	92	49	28	4	2	5
$9{ }^{\text {c }}$	$\mathrm{Co}(\mathrm{OAc})_{2}(0.0025)$	AcOH	4	77	51	14	1	2	3
10^{d}	$\mathrm{Co}(\mathrm{OAc})_{2}(0.5)$	AcOH	4	98	20	25	16	4	4
$11{ }^{e}$	$\mathrm{Co}(\mathrm{OAc})_{2}(0.5)$	AcOH	2	no reaction					
12^{f}	$\mathrm{Co}(\mathrm{OAc})_{2}(0.5)$	AcOH	2	no reaction					
13 g	$\mathrm{Co}(\mathrm{OAc})_{2}(0.5)$	AcOH	2	no reaction					
14^{h}	$\mathrm{Co}(\mathrm{OAc})_{2}(0.5)$	AcOH	4	no reaction					

[^0]In order to gain insight into the role of cobalt salts in the present reaction, acetylations of $\mathbf{1}$ with biacetyl by $\mathrm{Co}^{\mathrm{II}}$ and $\mathrm{Co}^{\mathrm{III}}$ ions under $\mathrm{O}_{2}(1 \mathrm{~atm})$ at 75 and $80^{\circ} \mathrm{C}$ were monitored by GC at appropriate time intervals (Fig. 1). The acetylation of $\mathbf{1}$ was efficiently catalyzed by $\mathrm{Co}^{I I}$ at $75^{\circ} \mathrm{C}$, while the reaction with Co ${ }^{\text {III }}$ did not take place at all at this temperature. However, when the reaction temperature was raised to $80^{\circ} \mathrm{C}$, the acetylation of $\mathbf{1}$ by $\mathrm{Co}^{\mathrm{III}}$ was prompted after an induction period of about 1 h . It is well-known that $\mathrm{Co}^{\mathrm{III}}$ ions are reduced to $\mathrm{Co}^{\mathrm{II}}$ ions by organic substrates such as toluene and cyclohexane via a one-electron transfer process.§ Therefore, the induction period of about 1 h observed at $80^{\circ} \mathrm{C}$ would correspond to the time needed for the formation of $\mathrm{Co}^{\mathrm{II}}$ by the one-electron transfer to $\mathrm{Co}^{\mathrm{III}}$ from biacetyl and/or 1. At $75{ }^{\circ} \mathrm{C}$, however, owing to the difficulty of the electron transfer to $\mathrm{Co}^{\mathrm{II}}$ from these substrates, no acetylation is induced. Therefore, if the reduction of $\mathrm{Co}^{\text {III }}$ to $\mathrm{Co}^{\mathrm{II}}$ is performed by adding an additive like aldehyde, $\mathbf{1}$ was acetylated by $\mathrm{Co}{ }^{\mathrm{III}}$ even at $75^{\circ} \mathrm{C}$ [eqn. (2)]. These findings indicate that the $\mathrm{Co}^{\mathrm{II}}$ ion, which reacts easily with O_{2} to generate labile dioxygen complexes such as a superoxocobalt(III) or μ-peroxocobalt(III) complex, plays an important role in the present acetylation [eqns. (3) and (4)].7.8

Although the mechanistic details are still obscure, the fact that the acetylation did not take place with $\mathrm{Co}^{\mathrm{II}}$ in the absence of O_{2} or with $\mathrm{Co}^{\text {III }}$ even in the presence of O_{2} suggests that a cobalt(III)-oxygen complex is the key species in the present acetylation of $\mathbf{1}$ with biacetyl. The resulting cobalt(III)-oxygen complex reacts with biacetyl to generate an acetyl radical which is readily trapped by O_{2} under the present conditions to form an acetyl peroxyl radical [eqns. (5) and (6)]. The formed acetyl peroxyl radical undergoes hydrogen abstraction from 1 to form an adamantyl radical 7 and peracetic acid [eqn. (7)]. The formed radical 7 would react with biacetyl to give 2 and an acetyl radical which serves as a chain carrier in the reaction [eqn. (8)]. In addition, 7 reacts with O_{2} to produce oxygenated products 5 and 6 [eqn. (9)]. Under the present reaction conditions in which O_{2} exists in the reaction system, the direct abstraction of the hydrogen from 1 by the acetyl radical may be disregarded, since the rate of hydrogen abstraction from an alkane by acetyl radical is much slower than that of the addition of O_{2} to acetyl radical. II The acetyl peroxyl radical can also abstract the hydrogen from 1 to form 7 and peracetic acid. It is probable that peracetic acid formed in the reaction is easily subjected to redox decomposi-

Fig. 1 Time-dependence curves for the conversion of 1 with biacetyl catalyzed by $\mathrm{Co}(\mathrm{acac})_{2}, \mathrm{Co}(\mathrm{acac})_{3}$ and $\mathrm{Co}(\mathrm{acac})_{3}$ combined with benzaldehyde in AcOH at 75 or $80^{\circ} \mathrm{C}$. Conditions: $1(3 \mathrm{mmol})$, biacetyl (18 mmol), $\mathrm{AcOH}(3 \mathrm{ml})$, cobalt salt $\left(3.0 \times 10^{-4} \mathrm{mmol}\right)$, benzaldehyde $\left(1.5 \times 10^{-2}\right.$ mmol).
tion by Co ions to generate a radical species which acts as a radical carrier. In fact, the reaction of $\mathbf{1}(3 \mathrm{mmol})$ with biacetyl (18 mmol) under the influence of MCPBA (3.6 mmol) and Co ${ }^{\text {III }}$ (0.015 mmol) in acetic acid (3 ml) in an inert atmosphere at $60{ }^{\circ} \mathrm{C}$ for 1 h afforded 2 with 60% selectivity, although the conversion of 1 was low (5\%) probably because of the rapid decomposition of MCPBA by Co ion.
In order to extend the present acetylation to substituted adamantanes, 1,3-dimethyladamantane $\mathbf{8}$ and $\mathbf{5}$ were allowed to react with biacetyl under the same reaction conditions as employed for $\mathbf{1}$ in Table 1, run 3. As expected, $\mathbf{8}$ was satisfactorily acetylated to the corresponding mono- and diacetyladamantanes in 54 and 21% yields, respectively. Similarly, $\mathbf{5}$ afforded $\mathbf{4}$ in 54% yield along with 3,5-diacetylada-mantan-1-ol (7\%). It is interesting to note that the reaction of 5 with biacetyl did not take place on the hydroxy function, which is different from the usual acetylation procedure using $\mathrm{Ac}_{2} \mathrm{O}$ or AcCl , in which the hydroxy group is preferentially acetylated.
This work was partly supported by a Grant-in-Aid for Scientific Research (No.10450337) from Monbusho.

Notes and references

\dagger Typical reaction: To a solution of adamantane $1(3 \mathrm{mmol})$ and $\mathrm{Co}(\mathrm{OAc})_{2}$ ($0.1 \mathrm{~mol} \%$) in $\mathrm{AcOH}(3 \mathrm{ml})$ was added biacetyl (18 mmol), and the mixture was stirred under $\mathrm{O}_{2}(1 \mathrm{~atm})$ at $60^{\circ} \mathrm{C}$ for 2 h . Products were isolated by column chromatography on silica gel with hexane-EtOAc
\ddagger Treatment of biacetyl with O_{2} in the presence of $\mathrm{Co}^{\text {II }}$ under these conditions afforded AcOH in 192% (based on $\mathrm{Co}^{\mathrm{II}}$), however, benzil was recovered unchanged by the same treatment
\S The reaction of a $\mathrm{Co}^{\mathrm{III}}$ ion with cyclohexane (ref. 5) or alkylbenzenes (ref. 6) is known to involve one-electron transfer from the substrate to $\mathrm{Co}^{\mathrm{III}}$, yielding a $\mathrm{Co}^{I I}$ ion and radical cation which readily liberates H^{+}to give an alkyl radical.
If The reaction of acetyl radical with O_{2} is reported to occur very fast [$k=$ $(1.8 \pm 0.5) \times 10^{9} \mathrm{M}^{-1} \mathrm{~s}^{-1}$] compared with the hydrogen abstraction from n-hexane by acetyl radical $\left(k \leqslant 5 \times 10^{3} \mathrm{M}^{-1} \mathrm{~s}^{-1}\right)$ (ref. 9) .

1 I. Tabushi, S. Kojo and Z. Yoshida, Tetrahedron Lett., 1973, 26, 2329.
2 I. Tabushi, S. Kojo and K. Fukunishi, J. Org. Chem., 1978, 43, 2370.
3 K. Fukunishi, A. Kohno and S. Kojo, J. Org. Chem., 1988, 53, 4369.
4 W. G. Bentrude and K. R. Darnall, J. Am. Chem. Soc., 1968, 90, 3588.
5 E. I. Heiba, R. M. Dessau and W. J. Koehl Jr., J. Am. Chem. Soc., 1969, 91, 6830.
6 A. Onopchenko and J. G. D. Shultz, J. Org. Chem., 1973, 38, 3729.
7 C. L. Wong, J. A. Switer, K. P. Balakrishnan and J. F. Endicott, J. Am. Chem. Soc., 1980, 102, 5511.
8 J. J. Bozell, B. R. Hames and D. R. Dimmel, J. Org. Chem., 1995, 60, 2398.

9 E. B. Carl, G. N. Anthony, M. R. David, U. I. Keith and L. Janusz, Aust. J. Chem., 1995, 48, 363.

[^0]: ${ }^{a} 1(3 \mathrm{mmol})$ was allowed to react with biacetyl (6 equiv., 18 mmol) in the presence of a metal salt under $\mathrm{O}_{2}(1 \mathrm{~atm})$ in $\mathrm{AcOH}(3 \mathrm{ml})$ at $60{ }^{\circ} \mathrm{C}$
 b Polyfunctionalyzed products and adamantane-1,3-diol were also formed. ${ }^{c} 80^{\circ} \mathrm{C}{ }^{d}$ Biacetyl (3 equiv., 9 mmol) was used. e In the absence of biacetyl f Hydroquinone ($0.1 \mathrm{~mol} \%$) was added. g Under argon. ${ }^{h}$ Benzil was used in place of biacetyl.

