Oxidation of methyl groups in the reaction of sulfur homopolyatomic cations with acetonitrile: formation and crystal structure of the novel trithietanylium ring

T. Stanley Cameron,^a Andreas Decken,^b Min Fang,^b Simon Parsons,^c Jack Passmore^{*b} and Dale J. Wood^b

^a Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4J3.

^b Department of Chemistry, University of New Brunswick, Fredericton, New Brunswick, Canada E3B 6E2. E-mail: passmore@unb.ca

^c Department of Chemistry, University of Edinburgh, King's Buildings, West Mains Road, Edinburgh, Scotland, UK EH9 3JJ

Received (in Cambridge, UK) 21st May 1999, Accepted 16th July 1999

RCN (R = C_6F_5 , Me) reacts with $S_n(AsF_6)_2$ (n = 4, 8) in liquid SO₂ to give the corresponding 3,5-disubstituted-1,2,4 thiadiazoles, and also, in the MeCN case, the tricyclic trication 4 containing the trithietanylium -CSSS⁺ and 1,2,3-dithiazolium -CSSNCH⁺ rings formed by the oxidation of methyl groups by sulfur homopolyatomic cations.

The isolation of stable soluble salts of the homopolyatomic cations of groups 16 and 17^1 has allowed the exploration of their chemistry, leading to new classes of compounds.² Reactions of sulfur cations with F₃CCCCF₃ and CF₃CN gave the new radical cations F₃CCSSSCCF₃⁺⁻ 1 and F₃CCNSSS⁺⁻ quantitatively,³

and with dicyanogen the diradical + SSSNCCNSSS+ 4 In an attempt to probe the generality of such reactions, we found that with C₆F₅CN, **2a** and **2b** were obtained, and with MeCN, derivatives of **3a** were formed. This furnishes a new, simple, high yield synthetic route to 3,5-disubstituted 1,2,4-thiadiazoles from nitriles with relatively low ionisation energies.⁵

The reaction of an equal molar mixture of $S_4(AsF_6)_2$ and $S_8(AsF_6)_2$ with MeCN gives the AsF_6^- salt of **4**, as well as AsF_6^- salts of **3c**, **3d** and **3e**. Species **4** contains the trithietanylium ring **5**, the first example of the $-CXXX^+$ (X = O, S, Se, and Te) heterocyclic ring system, and a 1,2,3-dithiazo-lium ring **6**, formed by the oxidation of the methyl groups by sulfur cations and transfer of the protons to **3a** (Scheme 1). This reaction is reminiscent of the oxidation of ArCH₃ to ArCO₂H by strong oxidising reagents.⁶ The synthesis of the chloride of **5** (R = Ph) has been claimed,⁷ but no structural evidence has been reported. Fused derivatives of **6**, Herz salts, are well known,⁸ and recently, the X-ray structure of **7** (Appel's salt) was determined.⁹

The structures of **2b**⁺ and the AsF₆⁻ salts of **3c**,[‡] **3e**[§] and **4**¶ were determined by X-ray crystallography. Species **4** dimerises by weak electrostatic interactions [S(5)–N(4a) 2.946(6) Å]. The centrosymmetric dimer is shown in Fig. 1. All rings are planar, and calculated (at MPW1PW91/6-31G* level)|| distances and

Fig. 1. ORTEP of 4 drawn at the 50% probability level. Selected bond lengths (Å), and angles (°); calculated results (MPW1PW91/6-31G*) are given in parentheses and in bold. C(1)-N(2) 1.377(7) (1.367), N(2)-C(3) 1.384(8) (1.417), C(3)-N(4) 1.332(8) (1.300), N(4)-S(5) 1.676(5) (1.630), S(5)-C(1) 1.663(6) (1.697), C(3)-C(6) 1.500(9) (1.484), C(1)-C(7) 1.450(8) (1.451), C(7)-S(8) 1.686(6) (1.703), S(8)-S(9) 2.046(2) (2.064), S(9)-S(10) 2.057(2) (2.067), S(10)-C(7) 1.692(6) (1.705), N(2)-C(11) 1.443(7) (1.430), C(11)-N(12) 1.335(7) (1.319), N(12)-S(13) 1.579(5) (1.600), S(13)–S(14) 2.041(2) (2.063), S(14)–C(15) 1.664(6) (1.669), C(15)-C(11) 1.398(8) (1.409); C(1)-N(2)-C(3) 111.1(5) (111.8), N(2)-C(3)-N(4) 115.2(5) (113.4), C(3)-N(4)-S(5) 109.2(4) (112.3), N(4)-S(5)-C(1) 94.3(3) (94.4), S(5)-C(1)-N(2) 110.0(4) (108.2), C(1)-N(2)-C(11) 122.0(5) (126.1), C(11)–N(2)–C(3) 126.6(5) (122.1), N(2)–C(3)–C(6) 122.6(6) (124.3), C(6)-C(3)-N(4) 122.2(6) (122.4), S(5)-C(1)-C(7) 123.3(4) (122.0), N(2)-C(1)-C(7) 126.7(5) (129.8), C(1)-C(7)-S(8) 124.9(4) (123.2), S(8)-(C7)-S(10) 107.0(3) (106.6), C(7)-S(8)-S(9) 85.3(2) (85.4), S(8)–S(9)–S(10) 82.86(8) (82.8), S(9)–S(10)–C(7) 84.8(2) (85.2), S(10)-C(7)-C(1) 127.4(4) (129.5), C(11)-N(12)-S(13) 115.5(4) (116.5), N(12)–S(13)–S(14) 98.2(2) (97.5), S(13)–S(14)–C(15) 93.0(2) (92.4), S(14)–C(15)–C(11) 114.4(4) (115.4), C(15)–C(11)–N(12) 118.9(5) (118.2), N(2)-C(11)-N(12) 116.9(5) (118.6), C(15)-C(11)-N(2) 124.2(5) (123.2).

Table 1 Observed^{*a*} and calculated^{*b*} (in parentheses) 1 H and 13 C NMR chemical shifts of **3a** derivatives

$CH_{3} \sim C_{C}^{2} N_{C}^{1} CH_{3}^{4}$								
Dania	$\delta_{ m H}$				$\delta_{\rm C}$			
ative	C1-H	C4-H	N1-H	N2-H	C1	C2	C3	C4
3a	2.73	2.53	_	_	15.4	187.9	173.3	17.4
•	(2.69)	(2.47)	10.00		(18.6)	(196.6)	(182.0)	(19.7)
3c	3.07	2.75	12.33		14.3	192.9	164.3	15.5
	(3.05)	(2.89)	(9.69)		(16.0)	(205.0)	(173.5)	(16.9)
$3d^c$	3.50	3.35	13.21	12.93	17.0	196.1	170.9	15.6
	(3.85)	(3.66)	(10.50)	(10.10)(21.1)	(214.4)	(185.3)	(19.5)
3e ^c	3.39	3.24	12.74	_	15.8	193.7	169.0	16.3
	(3.09)	(3.47)	(9.47)		(16.6)	(202.7)	(175.6)	(18.3)
a Chemical shifts were obtained at -70 °C in liquid SO ₂ using								

^{*a*} Chemical shifts were obtained at -70 °C in liquid SO₂, using NH₄(AsF₆) ($\delta_{\rm H}$ 5.80) or MeCN·AsF₅ ($\delta_{\rm H}$ 2.67, $\delta_{\rm C}$ 110.7) as internal standards. ^{*b*} Isotropic NMR shielding tensors were calculated at the MPW1PW91/6-311G(2DF)//MPW1PW91/3-21G* level and referenced against calculated TMS values. ^{*c*} ¹H and ¹³C chemical shifts were assigned based on HMQC and HMBC experiments at -70 °C.

bond angles are in good agreement with the values derived from the X-ray structure. The structure of the observed 1,2,4-thiadiazolium ring fragment in **4** does not differ significantly from that in **3c** and **3e**. Although the $-\overline{CSSS}^+$ ring is formally related to the 6π square planar S_4^{2+} ring,¹ the cyclobutadiene dianion,¹⁰ and 1,2-dithietes,¹¹ it can be represented by the valence bond structures **8** and **9**, consistent with the average Pauling bond orders of 1.35 (C–S) and 1.06 (S–S).

C₆F₅CN (3.283 g; 17.00 mmol) reacted with S₄(AsF₆)₂¹² (2.198 g; 4.344 mmol) in SO₂ (11.917 g) in a two-bulb Pyrex glass vessel incorporating a medium sintered-glass frit (apparatus and techniques given in ref. 12). After 3 days, insoluble S₈ (FT-Raman), OSF₂, AsF₃ (gas phase IR and ¹⁹F NMR), 5.136 g of a mixture of **2a** (elemental analysis, ¹⁹F NMR) and **2b** (elemental analysis, ¹⁹F NMR, X-ray crystal structure, MS, IR and FT-Raman), and S_n(AsF₆)₂ ($n \approx 19$) (colour, EPR) were identified.**

The AsF_6^- salts of **3c**, **3e** and **4** were prepared by the reaction of MeCN (0.5108 g; 12.443 mmol) and an equal molar mixture of $S_n(AsF_6)_2$ (n = 4, 8) [prepared by the reaction of S_8 (1.0222) g; 31.878 mmol) and AsF₅ (2.6668 g; 15.694 mmol) in SO₂ (12.991 g)]³ for about 15 days under strictly anhydrous conditions.¹² The overall molar ratio of MeCN, S₄(AsF₆)₂ and $S_8(AsF_6)_2$ was 4:1:1. After slowly removing the solvent and washing out the most soluble products (minor), the obtained mixture contained significant amounts of white needle-like crystals of the AsF_6^- salt of **3e** and dark red brick-like crystals of the AsF_6^- salt of 4. The mixture was dissolved in SO_2 , leaving insolubles (including the AsF_6^- salt of 4 and S_8), and the obtained solubles were identified as a mixture of the AsF₆salts of 3c, 3d and 3e by multinuclear NMR studies, here and in related studies. Observed and calculated NMR results are in reasonable agreement (Table 1). OSF2 and AsF3 (19F NMR) and minor amounts of deprotonated species (in situ ¹³C studies) were also identified. The formation of S_8 indicates that sulfur cations were reduced during the deprotonation process of the methyl groups. In a related reaction of $S_4(AsF_6)_2$ and $3a, \dagger \dagger$ crystals of the AsF_6^- salt of 3c were obtained and the X-ray crystal structure determined.

Hitherto the chemistry of homopolyatomic sulfur and selenium cations has been restricted to hydrogen-free compounds with the exception of a preliminary report of the reaction of E_n^{2+} (E = S, Se, n = 4, 8) with alkanes and toluene giving

products that included sulfides and selenides.¹³ This work suggests an extensive novel organic chemistry of homopolyatomic cations of group 16, presently under investigation.

We thank Dr Ingo Krossing for valuable advice on the theoretical calculations, Dr Larry Calhoun (UNB) for his assistance with numerous NMR experiments, Dr J. Britten (McMaster University) for X-ray data collection on species 3e AsF₆ and 4 (AsF₆)₃, and NSERC for an operating grant (J. P.).

Notes and references

† *Crystal data* for **2b**: C₁₄AsF₁₅N₂S, M = 588.14, monoclinic (*C*2/*c*), a = 11.967(4), b = 12.268(4), c = 24.076(5) Å, $\beta = 96.66(3)^\circ$, U = 3511(2) Å³, D = 2.225 g cm⁻³, T = 293(2) K, F(000) = 2256, Z = 8, $\mu = 2.216$ mm⁻¹, 6593 reflections measured, 3093 independent reflections, *R*1 (*wR*2) = 0.0538 (0.1347).

‡ *Crystal data* for **3c** AsF₆: C₄H₇AsF₆N₂S, M = 304.10, orthorhombic, space group *Pbca*, a = 11.874(3), b = 12.617(3), c = 13.005(3) Å, U = 1948.3(9) Å³, Z = 8, D = 2.073 g cm⁻³, T = 150(2) K, F(000) = 1184, $\mu = 3.757$ mm⁻¹. 3649 reflections measured, 1725 independent reflections, *R1* (*wR2*) = 0.0433 (0.0737).

§ *Crystal data* for **3e** AsF₆: C₄H₇As₂F₁₁N₂S, M = 474.04, orthorhombic, space group *Pnma*, a = 14.746(3), b = 8.023(2), c = 11.034(2) Å, U = 1305.4(5) Å³, Z = 4, D = 2.412 g cm⁻³, T = 210(2) K, F(000) = 904, $\mu = 5.402$ mm⁻¹. 13468 reflections measured, 1502 independent reflections, *R1* (*wR2*) = 0.0262 (0.0615).

¶ *Crystal data* 4 (AsF₆)₃: C₆H₄As₃F₁₈N₃S₆, *M* = 877.24, monoclinic, space group *P*2₁/*n*, *a* = 13.9666(1), *b* = 10.6426(1), *c* = 16.5839(1) Å, β = 111.285(1)°, *U* = 2296.90(3) Å³, *Z* = 4, *D* = 2.537 g cm⁻³, *T* = 153 K, *F*(000) = 1672, μ = 5.034 mm⁻¹. 24701 reflections measured, 5200 independent reflections, *R*1 (*wR*2) = 0.0593 (0.1499). The hydrogen atoms were found in difference Fourier maps and included into the refinement by a riding model. CCDC 182/1336. See http://www.rsc.org/ suppdata/cc/1999/1801/ for crystallographic data in .cif format.

All calculations were performed with GAUSSIAN 98W. (ref. 14). MPW1PW91 is a hybrid HF-DFT method. (ref. 15). Calculated distances and angles and observed values are in good agreement for **3c** and **3e**.

** Similar results were obtained from reaction of C_6F_5CN with an equal molar mixture of $S_n(AsF_6)_2$ (n = 4, 8).

†† Species 3a was synthesised according to ref. 16.

- N. Burford, J. Passmore and J. C. P. Sanders, in *From Atoms to Polymers, Isoelectronic Analogies*, VCH, Florida, 1989, p. 53 and references therein; S. Brownridge, I. Krossing, J. Passmore, H. D. B. Jenkins and H. K. Roobottom, *Coord. Chem. Rev.*, 1999, in the press and references therein.
- 2 T. Klapötke and J. Passmore, Acc. Chem. Res., 1989, 22, 234; S. Parsons and J. Passmore, Acc. Chem. Res., 1994, 27, 101.
- 3 T. S. Cameron, R. C. Haddon, S. M. Mattar, S. Parsons, J. Passmore and A. P. Ramirez, J. Chem. Soc., Dalton Trans., 1992, 1563; T. S. Cameron, R. C. Haddon, S. M. Mattar, S. Parsons, J. Passmore and A. P. Ramirez, Inorg. Chem., 1992, **31**, 2274.
- 4 G. D. Enright, J. R. Morton, J. Passmore, K. F. Preston, R. C. Thompson and D. J. Wood, *Chem. Commun.*, 1996, 967.
- 5 D. J. Wilkins and P. A. Bradley, in *Comprehensive Hetereocyclic Compounds II*, Pergamon, Oxford, 1996, vol. 4, p. 307.
- 6 H. T. Clarke and E. R. Taylor, Org. Synth., 1948, Coll. Vol. 2, 135.
- 7 E. Campaine, M. Pragnell and F. Haaf, J. Heterocyc. Chem., 1968, 5, 141.
- 8 L. I. Khmelnitski and O. A. Rakitin, in *Comprehensive Hetereocyclic Compounds II*, Pergamon, Oxford, 1996, vol. 4, p. 409.
- 9 S. Rabe and U. Müller, Z. Kristallogr. New Cryst. Struct., 1999, 214, 68.
- 10 P. J. Garratt and R. Zahler, J. Am. Chem. Soc., 1978, 100, 7753.
- 11 J. Nakayama, K. S. Choi, I. Akiyama and M. Hoshino, Tetrahedron
- Lett., 1993, 34, 115.
 12 M. P. Murchie, R. Kapoor, J. Passmore, G. Schatte and T. Way, *Inorg. Synth.*, 1997, 31, 102.
- 13 A. M. Rosan, J. Chem. Soc., Chem. Commun., 1985, 377.
- 14 GAUSSIAN 98W, Revision A.3, Gaussian, Inc., Pittsburgh PA, 1998.
- 15 C. Adamo and V. Barone, J. Chem. Phys., 1998, 108, 664.
- 16 G. Kresze, A. Maschke, R. Albrecht, K. Bederke, H. P. Patzschke, H. Smalla and A. Trede, *Angew. Chem., Int. Ed. Engl.*, 1962, 1, 89.

Communication 9/041071