Synthesis of 'crushed fullerene' C₆₀H₃₀

Berta Gómez-Lor,^{ab} Óscar de Frutos,^a and Antonio M. Echavarren^{*a}

^a Departamento de Química Orgánica, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain. E-mail: anton.echavarren@uam.es

^b Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, 28049 Madrid, Spain.

Received (in Cambridge, UK) 31st August 1999, Accepted 22nd October 1999

The synthesis of benzo[1,2-e:3,4-e':5,6-e'']tribenzo[l:l':l'']-triacephenanthrylene (C₆₀H₃₀) has been accomplished by a triple palladium-catalysed arylation of a *syn*-trialkylated truxene.

Part of the recent outburst in the chemistry of bowl-shaped polycyclic aromatic hydrocarbons (polyarenes)^{1,2} concerns their potential use as starting materials for the development of syntheses of fullerenes as alternatives to those based on the vaporisation of graphite.^{2–4} Indeed, fullerenes have been formed pyrolytically in low yield from aromatic hydrocarbons such as naphthalene and corannulene.² Additionally, the development of practical syntheses of functionalised bowl-shaped polyarenes should allow for the construction of fullerene-like molecular cages with polycyclic aromatic substructures. Progress towards the synthesis of giant polyarenes is also of interest in the area of materials science.⁵

We have recently completed a synthesis of polyarene 1, benzo[1,2-e:3,4-e':5,6-e'']triacephenanthrylene,⁶ using the palladium-catalysed intramolecular arylation reaction that we previously applied for the preparation of benzo[e]acephenanthrylenes and related polycyclic aromatic hydrocarbons.⁷ The synthesis of 1 was carried out by the intramolecular arylation of *syn*-trialkylated truxene⁸ 2 by using Pd(OAc)₂ as the catalyst at 130 °C in DMF (Scheme 1), while cyclisation of the *anti*-isomer of 2 had to be performed at 150 °C under otherwise identical conditions.⁶

We decided to apply this approach for the synthesis of the higher analogue **3**, benzo[1,2-e:3,4-e':5,6-e']tribenzo[l:l':l'']-triacephenanthrylene. Polyarene **3** contains a decacyclene core (highlighted in boldface in **3**") fused with three naphthyl units and possesses half of the rings of C₆₀ as shown in the Schlegel diagram **3**'.

The alkylation of the lithium trianion of truxene with 2-bromomethylnaphthalene gave selectively the *anti*-isomer of **4**. Initial isomerisation to the more stable *syn*-isomer **4** failed under the standard conditions (heating with KOBu^t in Bu^tOH)⁶ due to the insolubility of the *anti*-isomer. However, simple addition of a small amount of CH_2Cl_2 as co-solvent allowed for the almost quantitative conversion of the *anti*-isomer into **4** (75% overall yield). The preparation of the required starting material for the palladium-catalysed arylation was carried out by the alkylation of the lithium trianion of truxene with

Scheme 1 Reagents and conditions: i, Pd(OAc)₂, BnMe₃NBr, K₂CO₃, DMF, 130 °C, 71%.

† The EI mass spectrum of 1 is available as supplementary data, see http://www.rsc.org/suppdata/cc/1999/2431/

1-bromo-2-bromomethylnaphthalene⁹ to give the *anti*-stereoisomer of **5** as the major compound, which was isomerised with KOBu^t in Bu^tOH under refluxing conditions to give *syn*-5,10,15-tris(1-bromo-2-naphthylmethyl)truxene **5** (62%). Similarly, **6** was obtained by using 2-bromomethyl-1-methoxynaphthalene¹⁰ as the electrophile in the alkylation reaction, followed by base-catalysed isomerization (85% overall yield). Demethylation of **6** with BBr₃ in CH₂Cl₂ at -78 °C afforded trisnaphthol **7** (83%), which was treated with Tf₂O and 2,6-lutidine in CH₂Cl₂ (-30 to 0 °C) to give tris(triflate) **8** (52%).¹¹

Treatment of **5** with Pd(OAc)₂ (10–20 mol%) in the presence of BnMe₃NBr and K₂CO₃ or NaOAc in DMF or DMA at 110–160 °C gave complex reaction mixtures of insoluble materials. However, use of higher amounts of Pd(OAc)₂ (100 mol%, 0.3 equiv.) led to cleaner reaction mixtures from which **3** could be isolated in 42% yield.¹²‡ Treatment of tris(triflate) **8** in the presence of Pd(PPh₃)₂Cl₂ (150 mol%) and excess NaOPiv in DMA (120 °C, 26 h) also led to **3**, albeit in lower yield (11%).¹³

Polyarene **3** is a highly insoluble substance and its ¹H NMR could only be determined in 1,1,2,2-tetrachloroethane- d_2 at 130 °C. The EI-MS of **3** was very revealing since it showed the molecular ion at m/z 750 as the base peak along with characteristic M²⁺ and M³⁺ peaks at 375 and 248, respectively (Fig. 1). Additionally, peaks corresponding to loss of two (m/z 748, 6%), four (m/z 746, 4%), and six hydrogens (m/z 744, 2%) were clearly observed in the EI-MS. No C₆₀⁺⁺ (m/z 720) was observed in the mass spectrum. Polyarene **1** showed a similar EI mass spectrum to that of **3** under identical conditions, with

Fig. 1 EI-MS (probe temperature: 600 °C, ion source: 300 °C, 90 eV) of 3.

dehydrogenations presumably corresponding to that shown in 1'.¹⁴ This result suggests that under the conditions of the EI spectrum, **3** suffers the cyclodehydrogenations labelled *a* (**3''**).

The synthesis of **3** from **5** highlights the synthetic utility of the intramolecular C–H activation through aryl–palladium complexes.¹⁵ Now readily available polyarene **3** could serve as the starting material for the preparation of **9** ($C_{60}H_{24}$) by a triple cyclodehydrogenation analogous to that recently carried out on decacyclene by Scott to form the fullerene fragment $C_{36}H_{12}$.¹⁶ Additionally, bowl-shaped open fullerene **9** could be a direct precursor of C_{60} by a cascade of cyclodehydrogenation reactions.³ Efforts along these lines are in progress.

We are grateful to the *DGES* (Project PB97- $\overline{0002}$) for support of this research and to the *MEC* for a postdoctoral contract to B. G.-L. We acknowledge Johnson Matthey plc for a generous loan of PdCl₂ and Dr Maite Alonso (SIdI-UAM) for her skilled MS determinations.

Notes and references

‡ Synthesis of **3**: A mixture of **5** (150 mg, 0.15 mmol), Pd(OAc)₂ (34 mg, 0.15 mmol), BnMe₃NBr (69 mg, 0.3 mmol) and K₂CO₃ (207 mg, 1.5 mmol) in DMA (8 ml) was stirred at 140 °C for 36 h. The mixture was cooled to 23 °C and the solid was filtered off and washed with CH₂Cl₂ and acetone. The solid was suspended in aqueous NaCN and stirred for 1 h. The solid was filtered off and washed with water and acetone to give **3** as a clear brown powder (47 mg, 42%): mp > 300 °C; $\delta_{H}(1,1,2,2-\text{tetrachloroethane-}d_{2}, 130 °C, 300 MHz) 9.26–9.01 (m, 12 H), 8.13–8.02 (m, 12 H), 7.80–7.69 (m, 6 H); m/z (EI) (probe temperature: 600°C, ion source: 300 °C, 90 eV) m/z 750 (M⁺, 100%), 748 (M⁺ – 2, 6), 746 (M⁺ – 4, 4%), 744 (M⁺ – 6, 2%), 375 (M²⁺, 30%), 248 (M³⁺, 2%).$

- R. Faust, Angew. Chem., Int. Ed. Engl., 1995, 34, 1429; P. W. Rabideau and A. Sygula, Acc. Chem. Res., 1996, 29, 235; L. T. Scott, Pure Appl. Chem., 1996, 68, 291; L. T. Scott, Pure Appl. Chem., 1996, 68, 291; Y. Rubin, Chem. Eur. J., 1997, 3, 1009; G. Mehta and H. S. P. Rao, Tetrahedron, 1998, 54, 13 325; L. T. Scott, H. E. Bronstein, D. V. Preda, R. B. M. Ansems, M. S. Bratcher and S. Hagen, Pure Appl. Chem., 1999, 71, 209.
- 2 C. Crowley, H. W. Kroto, R. Taylor, D. R. M. Walton, M. S. Bratcher, P.-C. Cheng and L. S. Scott, *Tetrahedron Lett.*, 1995, **36**, 9215; C. Crowley, R. Taylor, H. W. Kroto, D. R. M. Walton, P.-C. Cheng and L. S. Scott, *Synth. Met.*, 1996, **77**, 17; R. Taylor, G. J. Langley, H. W. Kroto and D. R. M. Walton, *Nature*, 1993, **366**, 728.
- 3 M. J. Plater, J. Chem. Soc., Perkin Trans. 1, 1997, 2897; F. Diederich and Y. Rubin, Angew. Chem., Int. Ed. Engl., 1992, 31, 1101.
- 4 Observation of C₆₀^{+.} in the MS of cyclic polyines: Y. Tobe, N. Nakagawa, K. Naemura, T. Wakabayashi, T. Shida and Y. Achiba, J. Am. Chem. Soc., 1998, **120**, 4544; Y. Rubin, T. Parker, S. J. Pastor, S. Jalisatgi, C. Boulle and C. L. Wilkins, Angew. Chem., Int. Ed., 1998, **37**, 1226. For a brief review: R. Faust, Angew. Chem., Int. Ed., 1998, **37**, 2825. Fullerenes have also been observed in the MS of products obtained by the glow discharge of CHCl₃ vapor: S. Y. Xie, R. B. Huang, L.-H. Chen, W.-J. Huang and L. S. Zheng, Chem. Commun., 1998, 2045.
- 5 M. Müller, C. Kübel and K. Müller, Chem. Eur. J., 1998, 4, 2099.
- 6 Ó. de Frutos, B. Gómez-Lor, T. Granier, M. A. Monge, E. Gutiérrez-Puebla and A. M. Echavarren, Angew. Chem., Int. Ed., 1999, 38, 204.
- 7 J. J. González, N. García, B. Gómez-Lor and A. M. Echavarren, J. Org. Chem., 1997, 62, 1286.
- 8 Truxene (10,15-dihydro-5H-diindeno[1,2-a;1',2'-c]fluorene) was prepared from indan-1-one: E. V. Dehmlow and T. Kelle, Synth. Commun., 1997, 27, 2021.
- 9 M. S. Newman and S. I. Kosak, J. Org. Chem., 1949, 14, 375.
- 10 S. Kuwahara, A. Nemoto and A. Hiramatsu, *Agric. Biol. Chem.*, 1991, 55, 2909.
- 11 Compounds were characterised by ¹H and ¹³C NMR, EI or FAB MS and elemental analysis. Additionally, the configuration of 6 was confirmed by X-ray diffraction. The ¹H NMR spectra of 4–8 in CDCl₃ are concentration-dependent due to association (ref. 6).
- 12 Key to the isolation of **3** is the ready elimination of Pd^{II} by an aqueous solution of NaCN: B. L. Shaw, S. D. Perera and E. A. Staley, *Chem. Commun.*, 1998, 1361.
- 13 Palladium-catalysed arylation of triflates: J. E. Rice, Z.-W. Cai, Z.-M. He and E. La Voie, J. Org. Chem., 1995, 60, 8101 and references therein.
- 14 Selected data for 1: m/z (EI) (probe temperature: 600 °C, ion source: 300 °C, 90 eV) m/z 600 (M⁺, 100%), 598 (M⁺ −2, 18%), 596 (M⁺ −4, 4), 594 (M⁺ −6, 3), 300 (M²⁺, 29%), 200 (M³⁺, 2).
- 15 A recent review: G. Dyker, Angew. Chem., Int. Ed., 1999, 38, 1698.
- 16 L. T. Scott, M. S. Bratcher and S. Hagen, J. Am. Chem. Soc., 1996, 118, 8743; S. Attar, D. M. Forkey, M. M. Olmstead and A. L. Balch, Chem. Commun., 1998, 1255.

Communication 9/06990I