A remarkably stable copper(I) ethylene complex: synthesis, spectroscopy and structure

Bernd F. Straub, Frank Eisenträger and Peter Hofmann*

Organisch-Chemisches Institut der Universität Heidelberg, Im Neuenheimer Feld 270, D-69120 Heidelberg, Germany. E-mail: ph@phindigo.oci.uni-heidelberg.de

Received (in Basel, Switzerland) 29th September 1999, Accepted 9th November 1999

The novel copper(I) ethylene complex $[But_2P(NSiMe_3)_2-\kappa^2N]Cu(\eta^2-C_2H_4)$ and its norbornene analogue have been synthesized and characterized and their solid state structures determined.

Copper(1) olefin complexes play an important role in biochemistry and modern organic chemistry. Copper-catalyzed addition of carbanions to α,β -unsaturated carbonyls and coppercatalyzed cyclopropanation of alkenes by α -carbonyl diazoalkanes involve copper olefin complexes as catalytically active species or resting states.^{1–4} Ethylene, the smallest plant hormone, binds tightly to the copper receptor site ETR 1,^{5,6} participating in a variety of stress responses and developmental processes.⁷ Thompson *et al.* synthesized and characterized the first stable copper(1) ethylene complex, [HB(3,5-Me₂-1,2-HC₃N₂)₃- κ^3N]Cu(η^2 -C₂H₄), in 1983.⁸ Nevertheless, the stability of the ethylene/receptor complex is much higher than that of any reported artificial copper ethylene complex.^{5,6,9}

Owing to the notorious lability of ethylene coordination in known copper(I) complexes, only one extrapolated ¹³C NMR chemical shift relative to free ethylene ($\Delta \delta = 31.1$)¹⁰ and no ¹*J*_{CH} coupling constant for copper(I) coordinated ethylene could be determined. Obviously, such data are highly relevant for an understanding of the copper(I)–ethylene bond.

Here, we report a remarkably stable copper(1) ethylene complex **1**, which is easily accessible by utilizing a tailor-made sterically demanding and electron-rich iminophosphanamide, first described by Scherer and Schieder more than 30 years ago,¹¹ as a co-ligand, generated by *in situ* deprotonation (Scheme 1).¹²

The stability of **1** in the solid state and in solution is unprecedented. Colorless crystals of **1** can be dried at 10^{-3} mbar at ambient temperature without decomposition. Complex **1** melts at 108 °C to a colorless liquid which only slowly decomposes at that temperature. Protonated **1** could be observed in the gas phase (CI + MS, 2-methylpropane). No free ethylene is detected by ¹H NMR spectroscopy upon dissolving **1** in C₆D₆, CDCl₃ or toluene-d₈ in an argon atmosphere. The presence of additional ethylene leads to separate broad signals of free and of coordinated C₂H₄, indicating associative olefin exchange.

The C–C distance of ethylene in **1** is 1.362(6) Å, which does not differ significantly from the corresponding distance in free ethylene [1.3369(16) Å].¹³ The sp²-character of the C₂H₄ carbons is in accordance with a ${}^{1}J_{CH}$ coupling constant of 158 Hz, which is even larger than in free ethylene (156 Hz).¹⁴

The ¹H NMR resonance of the ethylene protons at δ 3.48 (C₆D₆, 298 K; for free ethylene δ 5.24 under the same

conditions) is shifted by 0.5 ppm to higher field than the most upfield copper(I) ethylene signal (δ 4.0) reported so far.¹⁵ The ¹³C NMR signal is detected at δ 73.0 with an upfield shift of 50 ppm compared to free ethylene. Lower temperatures and aromatic solvents lead to an upfield shift of the ethylene protons (δ 3.35, toluene-d₈, 233 K; δ 3.63, CDCl₃, 223 K).

The norbornene complex $[But_2P(NSiMe_3)_2-\kappa^2N]Cu(\eta^2-C_7H_{10})$ **2** could be obtained in a similar way.[†] Its solid state geometry, structurally analogous to **1**, is shown in Fig. 2.

Unlike 1, complex 2 allows determination of the rotational barrier of the olefin ligand as $\Delta G^{\ddagger} = 41.5 \pm 2.0 \text{ kJ mol}^{-1}$ (VT ¹³C{¹H}NMR) through coalescence of the signals of both the diastereotopic *C*(CH₃)₃ and C(*C*H₃)₃ carbons.

The high basicity of the anionic iminophosphanamide σ - and π -donor ligand and the small bite angle N–Cu–N of 77.80(9)° in the four-membered neutral chelate ring system seem to be responsible for the unprecedented stability and unusual spectral properties of **1**. The high HOMO and the low LUMO energy of a d¹⁰-ML₂ fragment with a small bite angle¹⁶ lead to increased π -back bonding towards the olefin and a strong olefin-to-metal dative bond, thus causing an increased ethylene ligand dissociation energy compared to other neutral and, even more so, cationic copper(I) units. Formation of stable dinuclear olefin-free copper(I) complexes with nearly linear N–Cu–N fragments and concomitant weak d¹⁰–d¹⁰ interaction as known from other systems⁸ is hampered by the sterically demanding iminophosphanimide ligand system with its SiMe₃ groups bent towards the olefin side (P–N–Si ≈ 150°).

Complex 1 catalyzes cyclopropanation of styrene with α carbonyl diazoalkanes at room temperature. The extremely high

Fig. 1 ORTEP diagram of the solid state structure of **1**.‡ Hydrogen atoms of the methyl groups are omitted for clarity. Selected bond lengths (Å) and angles (°): P-N(1) 1.6013(16), Si(1)-N(1) 1.7055(17), Cu-N(1) 2.0140(16), Cu-C(1) 1.987(3), C(1)-C(1A) 1.362(6); P-N(1)-Si(1) 151.35(11), N(1)-P-N(1A) 104.33(12), P-N(1)-Cu 88.93(8), N(1)-Cu-N(1A) 77.80(9).

Fig. 2 ORTEP diagram of the solid state structure of **2**.‡ Hydrogen atoms of the methyl groups are omitted for clarity. Average values of the three independent molecules with assumed C_s -symmetry in the asymmetric unit (standard deviation) are quoted. Selected bond lengths (Å) and angles (°): P–N(1) 1.599(5), Si(1)–N(1) 1.704(9), Cu–N(1) 2.031(7), Cu–C(2) 2.026(23), C(21)–C(22) 1.377(20); P–N(1)–Si(1) 149.4(1.5), N(1)–P–N(2) 104.7(3), P–N(1)–Cu 89.0(4), N(1)–Cu–N(2) 77.1(1).

solubility of **1** even in alkanes and its NMR active nuclei (¹H, ¹³C, ²⁹Si and especially ³¹P) now offer an ideal chance to investigate mechanistic aspects of organometallic copper(I) chemistry, especially of copper(I)-catalyzed cyclopropanation.

Support of this work by a PhD stipend of the Fonds der Chemischen Industrie for B. F. S. is gratefully acknowledged.

Notes and references

† Synthesis of 1: 13 ml 1.6 M BunLi in hexane (21 mmol) were added to 5.78 g (18.0 mmol) But₂P[N(SiMe₃)]NH(SiMe₃)¹¹ in 20 ml of hexane under an argon atmosphere, and the solution was refluxed for 1 min,¹² then added to a suspension of 4.97 g (24 mmol) CuBrSMe₂ in 20 ml of hexane at -78 °C and stirred while warming to ambient temperature. Ethylene (99.7%) was bubbled into the black suspension for 2 min. The suspension was filtered through Celite under an ethylene atmosphere. From the slightly yellow solution crude 1 was crystallized at -78 °C. Recrystallization yielded 3.21 g (7.8 mmol, 43.4%) of 1; crystallization from the collected organic phases yielded another batch of 2.80 g (6.6 mmol, 36.7%) (purity >97% 1). Colorless crystals, mp 108 $^\circ\mathrm{C}$ (slow gas evolution and decomp. of the colorless liquid); IR (KBr/cm⁻¹): v 1516 (C=C); ¹H NMR (298 K, C₆D₆, 300.13 MHz): δ 3.48 (s + sat, ¹J_{CH} 158 Hz, CH₂; 4H), 1.21 [d + sat, ³J_{PH} 14 Hz, ¹*J*_{CH} 126.5 Hz, C(CH₃)₃; 18H], 0.21 [s + sat, ¹*J*_{CH} 117 Hz, Si(CH₃)₃; 18H]; ¹³C NMR (gated decoupling) (298 K, C₆D₆, 75.47 MHz): δ 73.0 (t, ¹*J*_{CH} 158 Hz, ²*J*_{CH} 4 Hz, CH₂), 37.2 [ddez, ¹*J*_{CP} 64 Hz, ²*J*_{CH} 4 Hz, *C*(CH₃)₃], 28.2 [q sept d, ¹J_{CH} 126.5 Hz, ³J_{CH} 5.1 Hz, ²J_{CP} 2.6 Hz, C(CH₃)₃], 5.6 $[q'oct' + sat, {}^{1}J_{CSi} 57 \text{ Hz}, {}^{3}J_{CH} \approx 2 \text{ Hz} \approx {}^{3}J_{PC}, Si(CH_3)_3]; {}^{29}Si\{{}^{1}H\} \text{ NMR}$ (DEPT) (298 K, C₆D₆, 59.63 MHz): $\delta - 14.2$ (d + sat, ²J_{PSi} 14.8 Hz, ¹J_{CSi} 57 Hz); ${}^{31}P{}^{1}H$ NMR (298 K, C₆D₆, 121.50 MHz): δ 61.2 (s + sat, ${}^{1}J_{CP}$ 64 Hz, ${}^{2}J_{PS1}$ 14.8 Hz); CI-MS (%): m/z 764.3 (L₂Cu₂⁺) (77), 687.3 (L₂Cu – $CH_3 + H^+$) (57), 629.3 ($L_2Cu^+ - CH_3 - C_4H_9$) (75.1), 411.2 (M + H⁺) (2.1), 395.2 ($M^+ - CH_3$) (16), 383.2 ($LCu + H^+$) (35), 321.2 ($LH + H^+$) (100); elemental analysis for C₁₆H₄₀N₂CuPSi₂; calc: C, 46.74; H, 9.80; N, 6.81; P, 7.53; found: C, 46.38; H 10.04; N, 6.89; P, 7.24%

Spectroscopy of **2**: ¹H NMR (298 K, C₆D₆, 300.13 MHz): δ 4.16 (s + sat, ¹J_{CH} 164 Hz, =CH; 2H), 2.96 (br. s, CH, 2H), 1.38 (dt, ²J_{HH} 9.5 Hz, ³J_{HH} 1.8 Hz, syn-CHH; 1H), 1.24 [d, ³J_{PH} 14 Hz, C(CH₃)₃; 18H], 1.22 (dd, J_{HH} 2 and 13 Hz, exo-CHH; 2H), 0.74 (dd, J_{HH} 2.3 and 7.7 Hz, endo-CHH; 2H), 0.68 (dt, ²J_{HH} 9.5 Hz, ³J_{HH} 1.4 Hz, anti-CHH; 1H), 0.36 [s, Si(CH₃)₃; 18H];

¹³C{¹H} NMR (298 K, C₆D₆, 75.47 MHz): δ 93.1 (s, =CH), 43.7 (s, CH), 42.9 (s, CH₂), 37.7 [d, ¹*J*_{CP} 64 Hz, *C*(CH₃)₃], 28.2 [d, ²*J*_{CP} 2.4 Hz, *C*(CH₃)₃], 25.5 (s, CH₂CH₂), 5.8 [d, ³*J*_{PC} 2 Hz, Si(CH₃]₃); ²⁹Si{¹H} NMR (DEPT) (298 K, C₆D₆, 59.63 MHz): δ -14.8 (d, ²*J*_{PSi} 15 Hz); ³¹P{¹H} NMR (298 K, C₆D₆, 121.50 MHz): δ 60.1 (s + sat, ¹*J*_{CP} 65 Hz, ²*J*_{PSi} 15 Hz); VT ¹³C{¹H} NMR (toluene-d₈, 75.47 MHz): C(CH₃)₃, *T*_c = 197.5 ± 4.0 K, *k*_c = 42 Hz; C(CH₃)₃, *T*_c = 200.5 ± 4.0 K, *k*_c = 68 Hz; temperature calibration by external MeOH. Addition of norbornene has no effect on the coalescence temperatures, ruling out associative mechanisms for the observed degenerate rearrangement.

[‡] Data were collected on a Bruker SMART CCD instrument and the structure solutions were performed using SHELXTL V5.10,¹⁷ respectively. Intensities were corrected for Lorentz and polarization effects, an empirical absorption correction was applied using SADABS¹⁸ based on the Laue symmetry of the reciprocal space.

Crystal data: 1: $C_{16}H_{40}Cu\dot{N}_2PSi_2$, M = 411.19, monoclinic, space group C2/c, a = 11.6400(2), b = 15.9236(3), c = 12.6352(2) Å, $\beta = 95.949(1)^\circ$, V = 2329.33(7) Å³, Z = 4, half a molecule per asymmetric unit, $\mu = 1.11$ mm⁻¹, 8508 reflections measured at -73 °C, 2002 independent reflections ($R_{int} = 0.0239$), 1679 reflections observed [$I > 2\sigma(I)$], final agreement factors for 115 parameters: R1 = 0.027, wR2 = 0.064 (observed reflections) and R1 = 0.037, wR2 = 0.068 (all data).

2: C₂₁H₄₆CuN₂PSi₂, M = 477.29, monoclinic, space group $P2_1/n$, a = 10.2429(2), b = 42.4725(1), c = 18.6134(4) Å, $\beta = 98.442(1)^\circ$, V = 8009.9(3) Å³, Z = 12, three independent molecules per asymmetric unit, $\mu = 0.98 \text{ mm}^{-1}$, 59684 reflections measured at -73 °C, 13850 independent reflections ($R_{int} = 0.1098$), 7346 reflections observed [$I > 2\sigma(I)$], final agreement for 790 parameters: R1 = 0.078, wR2 = 0.159 (observed reflections), and R1 = 0.167, wR2 = 0.195 (all data).

CCDC 182/1478. See http://www.rsc.org/suppdata/cc/1999/2507/ for crystallographic files in .cif format.

- 1 G. Hallnemo, T. Olsson and C. Ullenius, J. Organomet. Chem., 1985, 282, 133.
- 2 S. Mori and E. Nakamura, *Chem. Eur. J.*, 1999, **5**, 1534 and references therein.
- 3 M. Mar Díaz-Requejo, M. C. Nicasio and P. J. Pérez, Organometallics, 1998, 17, 3051.
- 4 M. Mar Díaz-Requejo, T. Belderrain, M. C. Nicasio, F. Prieto and P. J. Pérez, *Organometallics*, 1999, **18**, 2601.
- 5 G. E. Schaller and A. B. Bleecker, Science, 1995, 270, 1809.
- 6 F. I. Rodríguez, J. J. Esch, A. E. Hall, B. M. Binder, G. E. Schaller and A. B. Bleecker, *Science*, 1999, **283**, 996.
- 7 J. R. Ecker, Science, 1995, 268, 667 and references therein.
- 8 J. S. Thompson, R. L. Harlow and J. F. Whitney, J. Am. Chem. Soc., 1983, 105, 3522.
- 9 M. Munakata, S. Kitagawa, S. Kosome and A. Asahara, *Inorg. Chem.*, 1986, 25, 2622.
- 10 A. Borg, T. Lindblom and R. Vestin, *Acta. Chem. Scand., Ser. A*, 1975, **29**, 475.
- 11 O. J. Scherer and G. Schieder, Chem. Ber., 1968, 101, 4184.
- 12 W. Wolfsberger and W. Hager, Z. Anorg. Allg. Chem., 1977, 433, 247.
- 13 L. S. Bartell, E. A. Roth, C. D. Hollowell, K. Kuchitsu and J. E. Young, Jr., J. Chem. Phys., 1965, 42, 2683.
- 14 H. Friebolin, Basic One- and Two-dimensional NMR spectroscopy, VCH, Cambridge, 1992.
- 15 W. Kläui, B. Lenders, B. Hessner and K. Evertz, Organometallics, 1988, 7, 1357.
- 16 P. Hofmann, H. Heiß and G. Müller, Z. Naturforsch., Teil B, 1987, 42, 395.
- 17 G. M. Sheldrick, Bruker Analytical X-Ray-Division, Madison, WI, 1997.
- 18 G. M. Sheldrick, 1996, unpublished work, based on the method described in: R. H. Blessing, Acta Crystallogr., Sect. A, 1995, 51, 33.

Communication 9/07928I