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A new family of monophosphine ferrocene ligands (MOPF)
has been synthesised in two steps from an optically pure
ferrocenyl sulfoxide and the first preliminary studies em-
ploying these ligands in asymmetric hydrosilylation of
styrene are presented.

During the last decades only very few efficient chiral monop-
hosphine ligands have been developed, in which the only Lewis
base is the phosphorus atom. The fact that bisphosphine ligands
form more rigid and stable complexes with metals, as compared
to those with monophosphines, has probably stimulated the
more abundant research in the former type. However, recently it
has become increasingly clear that there is a need for efficient
chiral monophosphine ligands for use in those reactions where
the usual C2-symmetric bisphosphines (e.g. BINAP) fail.1

One of the few efficient types of monophosphine ligands
discovered to date is Hayashi’s MOP ligands 1.1a,2 Here we
disclose a new family of arylMOnoPhosphinoFerrocene ligands
2 (herafter abbreviated MOPF), which show some resemblance
to the MOP ligands, but are simpler to modify in a rational
manner.3

We also present the first catalytic reactions employing these
new ligands. In terms of enantioselectivity, the results are very
encouraging and we believe that they can be further improved
by simple variation of the aryl unit.

During the initial phase of this project we searched for a
simple procedure to obtain a suitable building block for this new
family of ligands. Recently, great progress has been achieved
within the field of Directed ortho-Metallation (DoM) of
ferrocenes.4 However, the enantioselective ortho-lithiation of
e.g. diphenylphosphinoferrocene, which in principle would
allow us to synthesise these ligands in a single step, has met with
only limited success.5 On the other hand, Kagan et al.4a,6 and
Robinson et al.4b have recently described highly selective
ortho-lithiation procedures of optically pure ferrocenyl sulf-
oxides. As the sulfoxide can be removed from the ferrocene by
treatment with ButLi we chose this compound as a starting
material for the synthesis of the MOPF ligands. The synthesis of
the first two members of the MOPF family is shown in Scheme
1. After diastereoselective ortho-lithiation of the sulfoxide (S)-
34a and lithium–zinc exchange, the aryl scaffold is introduced
by a Negishi coupling giving 4. The selective removal of the
sulfoxide is accomplished with ButLi and the lithiated ferrocene
is then captured with ClPPh2 giving the ligands (S)-2a,b.

The potential and efficiency of the MOPF ligands is
exemplified in the asymmetric hydrosilylation of styrene.7 This
transformation belongs to the class of reactions where e.g.
BINAP gives only poor results.1a However, using the most
simple phenyl-MOPF ligand 2a the reaction proceeds nicely
with up to 70% ee (Table 1, entries 1 and 2). Introducing a
simple methoxy substituent on the aryl group interferes slightly
with the selectivity of the reaction and it is observed that the
addition of benzene as solvent improves the enantioselectivity
from 60 to 64% (entries 3 and 4). Currently, we have no
information on the catalytically active species in this reaction,
but it is noteworthy that a similar but more pronounced
behaviour has been observed in the hydrosilylation of styrene
using H-MOP (91% ee) and MeO-MOP (14% ee) as ligands.8
Moreover the sense of induction in the reactions using the (S)-
MOPF or the (S)-H-MOP ligands is the same. The rationalisa-
tion of these observations, however, must await further study.

In summary, a short and efficient synthesis of two members
of a novel family of monodentate phosphine ferrocene ligands
(MOPF) has been carried out. The simple procedure developed
paves the way for the preparation of an array of structurally
varied aryl-MOPF ligands. The preliminary catalytic reactions
employing these ligands have given encouraging results and we

Scheme 1 Reagents and conditions: i, LDA (1.2 equiv.), THF, 278 °C, 20
min, then ZnCl2 (1 equiv.) 278 °C, 1 h, then Pd2dba3 (2 mol%), P(fur)3 (8
mol%), aryl iodide, (1.5 equiv.), (R = H) room temp., 96 h, 67%, (R =
OMe) reflux, 72 h, 54%; ii, (2 equiv.) ButLi, THF, 278 °C, 5 min; then
ClPPh2, (3.5 equiv.) room temp., 3 h, (R = H) 67%, (R = OMe) 76%.

Table 1 Enantioselective hydrosilylation of styrene using MOPF ligands
2a,b.9

Entry Ligand t/h T/°C
Yield of
5 (%)a

Ee of 6
(%)bc

1 2a 24 room temp. 66 70 (S)
2 2a 36 room temp. 73 70 (S)
3 2b 36 room temp. 49 60 (S)
4 2b 72 room temp. 41d 64 (S)e

a Isolated yield after destillation or flash chromatography. b Ee deter-
mined by HPLC on a DAICEL OD-H column. c Absolute configuration
determined by optical rotation [see ref. 2(b)]. d Yield of 6 based on styrene.
e Benzene added as solvent.
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are pursuing the synthesis of a range of new aryl-MOPF as well
as alkyl-MOPF family members in order to find even better
ligands.10
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