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Triisopropylsilyldifluorobromopropyne, readily prepared in
excellent yield from the reaction of lithium triisopropylsilyl-
acetylide with CF2Br2, provides a convenient entry into a
functionalized CF2 synthon.

The gem-difluoromethylene unit is a key structural motif in
many fluorine containing compounds of biological and pharma-
ceutical significance. For this reason, it is an important synthetic
target.1 Two complementary approaches to such important unit
exist. These are (i) substitution of a carbonyl or an active
methylene group by fluorine;2 and (ii) use of small gem-
difluoromethylene-containing building blocks.3 When it comes
to fluorinate complex molecules, the latter approach is preferred
because of the reactivity, thermal instability, hazards and cost
associated with electrophilic and nucleophilic fluorinating
agents. The two most frequently used gem-difluoromethylene
synthons, (EtO)2P(O)CF2Br and EtOC(O)CF2Br, were devel-
oped in the late 70s and early 80s by Burton4 and Fried,5
respectively. Stimulated by our earlier work in the synthesis of
fluorinated phosphonates,6 we sought a new generation of
difluorinated building blocks from inexpensive industrial
fluorine feedstock such as CF2Br2 (not included in the list of
CFCs to be phased out). Our initial target, triisopropylsilyl-
difluoropropyne 1 (Fig 1), is a highly functionalized three-
carbon backbone that contains a propargyl silane moiety. This
feature should facilitate multiple synthetic conversions contain-
ing the gem-difluoromethylene unit.

A literature search revealed that difluoropropargyl substrates,
without exception, have been prepared in disappointingly low
yields.7 The low yields obtained have probably contributed to
the lack of use of the difluoropropargyl building block in the
literature. To our satisfaction, 1 was very efficiently assembled
in one step (92% GC-MS, 81% isolated) by the reaction of
CF2Br2 with lithium triisopropylsilylacetylide. This reaction
has been carried out on 5, 16 and 50 g scales and the results have
shown excellent reproducibility.8 We attributed the success of
this reaction to the presence of the TIPS group, which possesses
remarkably different properties compared to other alkylsilyl
groups.9 Chiefly, the presence of TIPS enhances the stability of
the triisopropylsilyldifluoropropyne anion intermediate.10 Al-
though the reaction mechanism is still unclear, our experimental
observation of a typical 5–10 min induction period supports the

difluorocarbene based ionic chain path proposed by Wakselman
and co-workers.7a With a highly efficient preparation of 1 in
hand, we explored the synthesis of various gem-difluoro-
methylene-containing compounds. Preliminary results, summa-
rized in Scheme 1,11 unveiled a highly versatile building
block.

Reduction with LiAlH4 gave allene 2, whereas nucleophilic
substitution with MP(O)(OEt)2 afforded difluoropropyne 3 and
difluoropropargyl phosphonate 4, although the latter was
obtained in low yield. Because compound 4 is a potential
precursor for isosteric and isoelectronic phosphate mimics of
enzyme inhibitors,12 an optimization of this reaction is in
progress. Using ultrasound, 1 reacted rapidly with zinc dust
yielding the alkynyl organozinc reagent 5 in situ. This
organozinc intermediate is a useful synthetic building block as
can be seen in the Reformatsky-type reactions shown at the
bottom of Scheme 1. Addition of Zn to 1 produced dimer 6 in
nearly quantitative yield. Compound 6 is a potential inter-
mediate in the synthesis of CF2CF2-containing bioactive
molecules.13 If 5 is quenched with powdered iodine, it produces
difluoroiodopropyne 7, another important gem-difluoromethyl-
ene synthon.14 Addition of trans-cinnamaldehyde to 5 afforded
difluoro alcohol 8 in 70% yield. When needed, the TIPS-
protecting group can be easily removed, as demonstrated by the
conversion of 8 to 9 under mild conditions, and in excellent
yield. The latter result will allow an easy entry to the preparation
of propargylic, and possibly allylic, a,a-difluorocarbonyl
compounds, after oxidation of the alcohol and hydrogenation of
the triple bond.

Fig. 1 Building block potential of 1.

Scheme 1 Reagents and conditions: i, BuLi, CF2Br2, THF, 220 °C to room
temp.; ii, LiAlH4 (0.6 equiv.), THF, 280 °C; iii, NaN (TMS)2, HP(O)(OEt)2

(1.0 equiv.), THF, 210 °C; iv, HP(O)(OEt)2, BuLi (1.5 equiv.), 210 °C; v,
Zn (1.2 equiv.),THF, room temp., ultrasound; vi, I2 (1 equiv.), 0 °C; vii,
trans-cinnamaldehyde, 20 h, room temp.; viii, 1 (1.0 equiv.), Zn (2.0
equiv.), room temp.; ix, TBAF (1.0 equiv., 1 M in THF), 280 °C.
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Other synthetic modifications of 1 and the preparation of a
monofluorinated counterpart to 1 are under investigation.
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