Electronic Supplementary Information

cis-Stereoselective Nickel-Catalyzed Cyclization/Alkylation and Arylation Reactions of Allenyl-Aldehydes and -Ketones with Organozinc Reagents

Suk-Ku Kang^{*} and Seok-Keun Yoon

Department of Chemistry and Lab for Metal-Catalyzed Reactions, Sungkyunkwan University, Suwon 440-746, Korea

General. All reagents were obtained from commercial sources and used without further purification unless stated otherwise. THF was distilled from sodium-benzophenone under N₂. ¹H NMR were conducted at 500 MHz in CDCl₃, and chemical shifts are reported δ units relative to the tetramethylsilane (TMS) signal at 0.00 ppm. Coupling constants (*J*) are reported in Hz. For thin-layer chromatography (TLC), Merck precoated plates (silica gel 60 F₂₅₄, 0.25 mm) were used. Silica gel 60 (TA792685, 230-400 mesh) from Merck was used for column chromatography. The reported yields are for chromatographically pure isolated products.

N-Buta-2,3-dienyl-4-methyl-*N*-(2-oxo-butyl)-benzenesulfonamide (1c)

(i) To a solution of *N*-Buta-2,3-dienyl-*N*-(2-oxo-ethyl)-4-methyl-benzenesulfonamide (**1a**) (300 mg, 1.13 mmol) in THF (10 mL) at 0 was added EtMgBr (0.60 mL, 3.0 M in diethyl ether, 1.80 mmol). After 1 h the reaction mixture was quenched by aq. NH₄Cl (5 mL) and extracted with ethyl acetate (20 mL x 3). The organic extracts are washed with saturated NaHCO₃ (5 mL), dried over MgSO₄, and concentrated *in vacuo*. The residue is subjected to SiO₂ column chromatography (1:2 EtOAc/hexane, R_f = 0.30) to give *N*-Buta-2,3-dienyl-*N*-(2-hydroxy-butyl)-4-methyl-benzene-sulfonamide (220 mg, 66%). (ii) *N*-Buta-2,3-dienyl-*N*-(2-hydroxy-butyl)-4-methyl-benzene-sulfonamide was followed by PCC-oxidation to give *N*-Buta-2,3-dienyl-4-methyl-*N*-(2-oxo-butyl)-benzenesulfonamide (**1c**) (270 mg, 82%). A oil; TLC, SiO₂, 1 : 2 EtOAc/hexane, R_f = 0.52; ¹H NMR (500 MHz, CDCl₃) δ 1.07 (t, 3H, *J* = 7.3 Hz), 2.43 (s, 3H), 2.54 (q, 2H, *J* = 7.3 Hz), 3.38 (dt, 2H, *J* = 2.2, 7.3 Hz), 3.97 (s, 2H), 4.70 (dt, 2H, J = 2.2, 6.6), 4.96 (tt, 1H, J = 7.0, 7.0), 7.31 (d, 2H, J = 8.1 Hz), 7.71 (d, 2H, J = 8.1 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 7.8, 21.9, 30.1, 33.2, 48.4, 55.3, 76.8, 85.8, 108.2, 127.8, 130.1, 136.7, 144.1, 207.1, 210.3; HRMS calcd for C₁₅H₁₉NO₃S 293.1086. found: 293.1087.

Octa-6,7-dien-2-one (1g)

A oil; TLC, SiO₂, EtOAc / hexanes 1 : 5, $R_f = 0.60$; ¹H NMR (500 MHz, CDCl₃) δ 1.55 (q, 2H, J = 7.3 Hz), 1.87 (m, 2H), 2.00 (s, 3H), 2.34 (d, 2H, J = 7.3 Hz), 4.53 (m, 2H), 4.92 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 23.1, 27.6, 42.8, 75.1, 89.4, 208.7; HRMS calcd for C₈H₁₂O 124.0888. found: 124.0887.

4-Isopropenyl-1-(toluene-4-sulfonyl)-pyrrolidin-3-ol (3a). Typical Procedure:

To a stirred solution of Ni(COD)₂ (10 mg, 0.038 mmol) in dry THF under N₂ is sequentially added 1a (100 mg, 0.38 mmol) and Me₂Zn (0.57 mL, 2.0 M in toluene, 1.14 mmol). The mixture is stirred at 0 °C for 10 min, quenched by the addition of 2 N HCl (5 mL), and extracted with ethyl acetate. The organic extracts are washed with saturated NaHCO₃ (10 mL), dried over MgSO₄, and concentrated *in vacuo*. The residue is subjected to SiO₂ column chromatography (1:1 EtOAc/hexane, R_f = 0.29) to give 4-isopropenyl-1-(toluene-4-sulfonyl)-pyrrolidin-3-ol (3a) (82 mg, 77%). A colorless oil; ¹H NMR (500 MHz, CDCl₃) δ 1.79 (t, 3H, *J* = 0.7 Hz), 2.42 (s, 3H), 2.62 (m, 1H), 3.31 (dd, 1H, *J* = 9.3, 11.1 Hz), 3.45 (dd, 1H, *J* = 1.3, 11.5 Hz), 3.54 (dd, 1H, *J* = 3.7, 11.5 Hz), 4.27 (m, 1H), 5.03 (dd, 1H, *J* = 1.2, 2.9 Hz), 7.32 (d, 2H, *J* = 8.3 Hz), 7.78 (d, 2H, *J* = 8.3 Hz); ¹³C NMR (125 MHz, CDCl₃) δ 21.9, 23.3, 48.1, 50.9, 56.4, 70.6, 114.3, 127.9, 130.1, 134.5, 139.9, 143.8; HRMS calcd for C₁₄H₁₉NO₅S 281.1086. found: 281.1071.

4-(1-Ethyl-vinyl)-1-(toluene-4sulfonyl)-pyrrolidin-3-ol (3b)

A colorless oil; TLC, SiO₂, EtOAc / hexanes 1 : 1, $R_f = 0.43$; ¹H NMR (500 MHz, CDCl₃) δ 1.04 (t, 3H, J = 7.3 Hz), 1.98-2.09 (m, 2H), 2.43 (s, 3H), 2.69 (m, 1H), 3.30 (dd, 1H, J = 9.2, 11.4 Hz), 3.44 (d, 1H, J = 11.4 Hz), 3.55 (m, 2H), 4.23 (dd, 1H, J = 3.4, 4.0 Hz). 4.78 (s, 1H), 5.05 (s, 1H), 7.32 (d, 2H, J = 8.1 Hz), 7.75 (d, 2H, J = 8.1 Hz); ¹³C NMR (125 MHz, CDCl₃) δ 12.1, 21.6, 29.1, 48.0, 49.6, 55.9, 70.1, 111.9, 127.5, 129.7, 134.1, 143.5, 145.1; HRMS calcd for C₁₅H₂₁NO₃S: 295.1242. found: 295.1234.

4-(1-Butyl-vinyl)-1-(toluene-4sulfonyl)-pyrrolidin-3-ol (3c)

A colorless oil; TLC, SiO₂, EtOAc / hexanes 1 : 2, $R_f = 0.35$; ¹H NMR (500 MHz, CDCl₃) δ 0.89 (t, 3H, J = 7.3 Hz), 1.25-1.43 (m, 4H), 2.00 (m, 2H), 2.43 (s, 3H), 2.67 (m, 1H), 3.28 (dd, 1H, J = 9.5, 11.7 Hz), 3.44 (d, 1H, J = 11.7 Hz), 3.55 (m, 2H), 4.22 (dd, 1H, J = 3.4, 4.0 Hz). 4.77 (s, 1H), 5.04 (s, 1H), 7.32 (d, 2H, J = 8.1 Hz), 7.74 (d, 2H, J = 8.1 Hz); ¹³C NMR (125 MHz, CDCl₃) δ 14.3, 22.0, 22.7, 30.3, 36.6, 48.5, 49.8, 56.3, 70.5, 113.3, 127.8, 130.1, 134.5, 143.8, 144.1; HRMS calcd for C₁₇H₂₅NO₃S: 323.1555. found: 323.1562.

4-(1-Phenyl-vinyl)-1-(toluene-4-sulfonyl)-pyrrolidin-3-ol (3d). Typical Procedure:

To a stirred solution of ZnCl₂ (1.14 mL, 1.0 M in diethyl ether, 1.14 mmol) in THF at 0 °C under N₂, phenyllithium (0.95 mL, 1.8 M in cyclohexane-ether 70 to 30, 1.17 mmol) is added. After stirring for 30 min at 0 °C, a solution of Ni(COD)₂ (10.4 mg, 0.038 mmol) in dry THF is added and the resulting mixture is immediately transferred by cannula to a solution of **1a** (100 mg, 0.38 mmol) in THF. The mixture is stirred at 0 °C for 30 min under N₂, quenched with 2 N HCl (5 mL), and extracted with ethyl acetate. The organic extracts are washed with saturated NaHCO₃ (10 mL), dried over MgSO₄, and concentrated in vacuo giving a residue, which is subjected to SiO₂ column chromatography (1:2 EtOAc/hexane, $R_f = 0.23$) to give 4-(1-phenyl-vinyl)-1-(toluene-4-sulfonyl)-pyrrolidin-3-ol (3d) (108 mg, 83%). A white solid: mp 120 ; ¹H NMR (500 MHz, CDCl₃) δ 2.43 (s, 3H), 3.27 (m, 1H), 3.38 (dd, 1H, J = 11.5, 0.6 Hz), 3.40 (dd, 1H, J = 11.4, 9.0 Hz), 3.60 (dd, 1H, J = 11.5, 4.2 Hz), 3.74 (dd, 1H, J = 9.0, 7.0 Hz), 4.16 (dd, 1H, J = 7.0, 4.6 Hz), 5.05 (t, 1H, J = 1.5 Hz), 5.45 (dd,1H, J = 1.5, 0.7), 7.29 (m, 2H), 7.31 (m, 2H), 7.33 (m, 1H), 7.35 (d, 2H, J = 8.3), 7.76 (d, 2H, J = 8.3); ¹³C NMR (125 MHz, CDCl₃) δ 21.9, 48.9, 49.1, 56.2, 70.8, 116.5, 126.5, 127.9, 128.6, 129.1, 130.1, 134.5, 140.9, 143.7, 143.9; HRMS calcd for C₁₉H₂₁NO₃S 343.1242 found 343.1229.

4-Isopropenyl-3-methyl-1-(toluene-4-sulfonyl)-pyrrolidin-3-ol (3e)

A colorless oil; TLC, SiO₂, EtOAc / hexanes 1 : 2, $R_f = 0.28$; ¹H NMR (500 MHz, CDCl₃) δ 1.26 (s, 3H), 1.78 (s, 3H), 2.43 (s, 3H), 2.51 (dd, 1H, J = 7.7, 10.6 Hz), 3.341 (m, 3H), 3.55 (dd, 1H, J = 7.7, 9.9 Hz), 4.78 (s, 1H), 5.06 (dd, 1H, J = 1.5, 1.8 Hz), 7.33 (d, 2H, J = 8.1 Hz), 7.74 (d, 2H, J = 8.1 Hz); ¹³C NMR (125 MHz, CDCl₃) δ 21.6, 24.4, 24.6, 50.6, 54.2, 60.5, 76.7, 114.9, 127.5, 129.7, 134.1, 140.1, 143.5; HRMS calcd for C₁₅H₂₁NO₅S 295.1242. found: 295.1242.

4-(1-Ethyl-vinyl)-1-(toluene-4sulfonyl)-pyrrolidin-3-ol (3f)

A colorless oil; TLC, SiO₂, EtOAc / hexanes 1 : 3, $R_f = 0.20$; ¹H NMR (500 MHz, CDCl₃) δ 1.02 (t, 3H, J = 7.3 Hz), 1.23 (s, 3H), 2.02-2.09 (m, 2H), 2.44 (s, 3H), 2.53 (dd, 1H, J = 7.3, 11.4 Hz)), 3.32 (m, 2H), 3.42 (d, 1H, J = 11.4 Hz), 3.56 (dd, 1H, J = 7.3, 9.5 Hz), 4.84 (s, 1H), 5.06 (d, 1H, J = 1.1 Hz), 7.32 (d, 2H, J = 8.1 Hz), 7.74 (d, 2H, J = 8.1 Hz); ¹³C NMR (125 MHz, CDCl₃) δ 12.3, 21.6, 24.8, 30.9, 51.2, 53.1, 60.4, 76.6, 112.2, 127.5, 129.6, 134.1, 143.4, 145.9; HRMS calcd for C₁₆H₂₃NO₃S: 309.1399. found: 309.1398.

3-Methyl-4-(1-phenyl-vinyl)-1-(toluene-4-sulfonyl)-pyrrolidin-3-ol (3g)

A white solid: mp 102 ; TLC, SiO₂, EtOAc / hexanes 1 : 2, $R_f = 0.35$; ¹H NMR (500 MHz, CDCl₃) δ 0.94 (s, 3H), 2.45 (s, 3H), 3.18 (dd, 1H, J = 11.4, 7.3 Hz), 3.36 (d, 1H, J = 11 Hz), 3.45 (m, 1H), 3.75 (dd, 1H, J = 9.5, 7.3 Hz), 5.15 (s, 1H), 5.47 (s, 1H), 7.31 (m, 7H), 7.77 (d, 2H, J = 8.1 Hz); ¹³C NMR (125 MHz, CDCl₃) δ 21.8, 25.1, 51.5, 52.1, 60.8, 77.5, 116.9, 126.7, 127.8, 128.2, 128.8, 129.9, 134.4, 142.6, 143.7, 144.1; HRMS calcd for C₂₀H₂₃NO₃S 357.1399 found 357.1392.

3-Ethyl-4-(1-ethyl-vinyl)-1-(toluene-4-sulfonyl)-pyrrolidin-3-ol (3h)

A colorless oil: TLC, SiO₂, EtOAc / hexanes 1 : 1, $R_f = 0.38$; ¹H NMR (500 MHz, CDCl₃) δ 0.91 (t, 3H, J = 7.3 Hz), 1.01 (t, 3H, J = 7.3 Hz), 1.40-1.55 (m, 2H), 1.90-2.10 (m, 2H), 2.44 (s, 3H), 2.54 (dd, 1H, J = 7.3, 11.4 Hz), 3.30 (dd, 1H, J = 9.5, 11 Hz), 3.35 (s, 2H), 3.56 (dd, 1H, J = 7.3, 9.5 Hz), 4.84 (s, 1H), 5.04 (d, 1H, J = 0.7 Hz), 7.33 (d, 2H, J = 8.1 Hz), 7.74 (d, 2H, J = 8.1 Hz); ¹³C NMR (125 MHz, CDCl₃) δ 9.1, 12.7, 22.0, 31.4, 31.8, 51.7, 52.4, 58.6, 80.0, 112.7, 127.9, 130.0, 134.6, 143.8, 146.5; HRMS calcd for C₁₇H₂₅NO₃S 323.1555 found 323.1566.

3-Hydroxy-4-isopropenyl-cyclopentane-1,1-dicarboxylic acid diethyl ester (3i)

A colorless oil: TLC, SiO₂, EtOAc / hexanes 1 : 3, $R_f = 0.46$; ¹H NMR (500 MHz, CDCl₃) δ 1.26 (dd, 6H, J = 7.3, 12.1 Hz), 1.82 (s, 3H), 2.33 (m, 3H), 2.51 (m, 2H), 2.56 (m, 2H), 4.21 (q, 4H, J = 7.3 Hz), 4.28 (m, 1H), 4.89 (s, 1H), 5.04 (d, 1H, J = 1.5 Hz); ¹³C NMR (125 MHz, CDCl₃) δ 14.4, 23.6, 34.8, 42.6, 52.5, 58.6, 62.1, 72.8, 113.2, 142.8, 173.1; HRMS calcd for C₁₄H₂₂O₅ 270.1467 found 270.1471.

3-Hydroxy-4-(1-phenyl-vinyl)cyclopentane-1,1-dicarboxylic acid diethyl ester (3j)

A colorless oil; TLC, SiO₂, EtOAc / hexanes 1 : 3, $R_f = 0.38$; ¹H NMR (500 MHz, CDCl₃) δ 1.27 (t, 6H, J = 7.3 Hz), 2.52 (m, 3H), 2.67 (t, 1H, J = 13.2 Hz), 3.23 (m, 1H), 4.14 (m, 1H), 4.22 (q, 4H, J = 7.3 Hz), 5.24 (s, 1H), 5.47 (s, 1H), 7.33 (m, 5H); ¹³C NMR (125 MHz, CDCl₃) δ 14.2, 35.3, 42.2, 50.1, 58.2, 61.9, 72.6, 115.4, 126.5, 128.0, 128.7, 141.8, 146.1, 172.6, 172.9; HRMS calcd for C₁₉H₂₄O₅ 332.1624 found 332.1627.

6-Isopropenyl-1-methyl-3-oxo-2-oxa-bicyclo [2, 2, 1] heptane-4-carboxylic acid ethyl ester (3k)

A colorless oil: TLC, SiO₂, EtOAc / hexanes 1 : 2, $R_f = 0.34$; ¹H NMR (500 MHz, CDCl₃) δ 1.32 (t, 3H, J = 7.3 Hz), 1.52 (s, 3H), 1.75 (s, 3H), 2.06 (m, 1H), 2.10 (d, 1H, J = 10.3 Hz), 2.39 (dd, 1H, J = 10.3, 2.2 Hz), 2.51 (dd, 1H, J = 13.9, 11.0 Hz), 2.80 (m, 1H), 4.27 (q, 2H, J = 7.3 Hz), 4.85 (d, 1H, J = 0.4 Hz), 4.99 (dd, 1H, 1.8, 1.5 Hz); ¹³C NMR (125 MHz, CDCl₃) δ 14.5, 17.6, 21.1, 33.5, 49.1, 52.6, 58.6, 62.1, 91.1, 116.4, 141.7, 168.5, 173.8; HRMS calcd for C₁₃H₁₈O₄ 238.1205 found 238.1204.

1-Mehtyl-3-oxo-6-(1-phenyl-vinyl)-2-oxa-bicyclo [2, 2, 1] heptane-4-carboxylic acid ethyl ester (31)

A bright yellow oil: TLC, SiO₂, EtOAc / hexanes 1 : 2, $R_f = 0.37$; ¹H NMR (500 MHz, CDCl₃) δ 1.32 (t, 3H, J = 7.3 Hz), 1.37 (s, 3H), 2.15 (ddd, 1H, J = 2.6, 5.5, 13.6 Hz), 2.21 (d, 1H, J = 10.6 Hz), 2.44 (dd, 1H, J = 2.6, 10.6 Hz), 2.72 (dd, 1H, J = 11.4, 13.6 Hz), 3.37 (dd, 1H, J = 5.5, 11.4 Hz), 4.28 (qd, 2H, J = 7.3, 2.6 Hz), 5.28 (d, 1H, J = 1.1 Hz), 5.45 (s, 1H), 7.29-7.35 (m, 5H); ¹³C NMR (125 MHz, CDCl₃) δ 14.2, 18.0, 35.3, 48.7, 49.7, 50.9, 58.2, 61.8, 90.0, 115.9, 126.5, 127.7, 128.5, 143.0, 145.0, 168.0, 173.4; HRMS calcd for C₁₈H₂₀O₄ 300.1362 found 300.1360.

2-(1-Phenyl-vinyl)-cyclopentanol (3m)

A colorless oil: TLC, SiO₂, EtOAc / hexanes 1 : 5, $R_f = 0.35$; ¹H NMR (500 MHz, CDCl₃) δ 1.66 (m, 1H), 1.78 (m, 1H), 1.86 (m, 1H), 1.93 (m, 3H), 2.99 (m, 1H), 4.08 (dd, 1H, J = 4.0, 4.8 Hz), 5.22 (dd, 1H, J = 1.5, 1.8 Hz), 5.47 (dd, 1H, J = 1.1, 1.8), 7.30 (m, 1H), 7.34 (m, 2H), 7.39 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 22.4, 27.4, 34.1, 51.7, 73.2, 115.2, 126.7, 128.1, 128.9, 142.7, 147.8; HRMS calcd for C₁₃H₁₆O 188.1201 found 188.1205.

1-Methyl-2-(1-Phenyl-vinyl)-cyclopentanol (3n)

A colorless oil: TLC, SiO₂, EtOAc / hexanes 1 : 5, $R_f = 0.53$; ¹H NMR (500 MHz, CDCl₃) δ 0.96 (s, 3H), 1.62-1.76 (m, 2H), 1.89-2.16 (m, 4H), 2.96 (dd, 1H, *J* = 7.3, 11.7 Hz)), 5.27 (dd, 1H, *J* = 1.1 1.5 Hz), 5.46 (d, 1H, *J* = 1.1 Hz), 7.28 (m, 1H), 7.33 (m, 2H), 7.38 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 21.3, 28.0, 30.6, 40.8, 54.5, 79.0, 115.3, 126.9, 127.6, 128.6, 144.2, 148.8; HRMS calcd for C₁₄H₁₈O 202.1358 found 202.1358.

4-Methyl-6-(toluene-4sulfonyl)-2,4a,5,6,7,7a-hexahydro-pyrano [2,3-c] pyrrole (5a)

A brown oil: TLC, SiO₂, EtOAc / hexanes 1 : 1, $R_f = 0.50$; ¹H NMR (500 MHz, CDCl₃) δ 1.67 (d, 3H, J = 1.8 Hz), 2.28 (m, 1H), 2.42 (s, 3H), 2.87 (dd, 1H, J = 9.2, 11.0 Hz), 3.28 (d, 1H, J = 11.4 Hz), 3.70 (dd, 1H, J = 5.1, 11.4 Hz), 3.78 (dd, 1H, J = 8.4, 9.2 Hz), 3.98 (m, 3H), 5.44 (d. 1H, J = 1.5 Hz), 7.32 (d, 2H, J = 7.7 Hz), 7.72 (d, 2H, J = 7.7 Hz); ¹³C NMR (125 MHz, CDCl₃) δ 20.5, 21.0, 41.9, 50.1, 53.4, 63.8, 74.0, 120.2, 126.5, 128.6, 129.2, 132.9, 142.3; HRMS calcd for C₁₅H₁₉NO₃S 293.1088 found 293.1086.

4-Ethyl-6-(toluene-4sulfonyl)-2,4a,5,6,7,7a-hexahydro-pyrano [2,3-c] pyrrole (5b)

A bright yellow oil; TLC, SiO₂, EtOAc / hexanes 1 : 1, $R_f = 0.58$; ¹H NMR (500 MHz, CDCl₃) δ 1.00 (t, 3H, J = 7.3 Hz), 1.96 (m, 2H), 2.33 (m, 1H), 2.88 (dd, 1H, J = 9.2, 11.0 Hz), 3.28 (d, 1H, J = 11.7 Hz), 3.70 (dd, 1H, J = 5.1, 11.7 Hz), 3.78 (dd, 1H, J = 8.4, 9.2 Hz), 4.00 (m, 3H), 5.42 (s. 1H), 7.31 (d, 2H, J = 8.1 Hz), 7.72 (d, 2H, J = 7.7 Hz); ¹³C NMR (125 MHz, CDCl₃) δ 12.0, 21.9, 28.9, 42.2, 51.8, 54.8, 65.4, 75.7, 119.9, 127.9, 130.0, 134.4, 136.2, 143.8; HRMS calcd for C₁₆H₂₁NO₃S 307.1242 found 307.1239.

Supplementary materials for 3a

NMR spectra and calculations

All NMR measurements were performed on a Bruker Avance 400 spectrometer system (9.4 T) at a temperature of 298 K. The NMR spectra of ¹H NMR, ¹³C NMR, DEPT, *J*-Resolved, COSY, HMQC, HMBC, and NOESY were collected in CHCl₃-d with TMS as an internal reference. The concentration of the samples was 50 mM. For ¹H-NMR analysis, 16 transients were acquired with a 1 sec relaxation delay using 32 K data points. The 90 ° pulse was 10 μ sec with a spectral width of 3378 Hz. ¹³C NMR and DEPT spectra were obtained for a spectral width of 20964 Hz, collecting 64 K data points. The 90 ° pulse was 10.4 μ sec. Two-dimensional spectra were acquired with 2048 data points for t2 and 256 for t1 increments. All calculations were performed using MSI software (San Diego, U.S.A.) on a Silicon Graphics O2 workstation. The potentials were arranged using a consistent-valence force field and the calculation was performed for 500 ps. Among 500 calculated structures, ten structures with the lowest total energy were superimposed and used for analysis.

Result

The structures and nomenclatures of SKY-103 are shown in Fig. 1. The configuration of ring juncture protons can be determined based on the different distances between H3 and vinyl protons H6a/H6b. As shown in Fig. 2, while in the case of *cis* configuration, the distances of H3-H6a and H3-H6b calculated by molecular modeling are 3.31 and/or 4.28 Å, respectively, in the case of *trans*, they are 4.79 and/or 5.07 Å, respectively. The 1D NOESY slices at H6a and H6b shown in Fig. 3 give 0.3% and 0.2% nOe for H3, respectively. When the distance between H6a and H6b is considered a reference, the distances between H6a and H3, and H6b and H3 are 3.42 and 3.67 Å, respectively. These values are fit to the *cis* configuration. In order to confirm the result, the relationship between coupling constants and the Karplus equation was used. The coupling constant between H3 and H4 obtained from the *J*-resolved spectrum is 6.0 Hz. The dihedral angle determined based on the Karplus equation is 32.4 °. While the angle of the *cis* isomer calculated by molecular modeling is 34.2 °, the angle of the *trans* isomer is 167.7 °. Therefore, the configuration of ring juncture protons is *cis*. Total assignments of the ¹H and ¹³C NMR data of **3a** are listed in Table 1.

Fig. 1. The structures and nomenclatures of 3a

δ of ¹³ C	CHn	δ of ¹ H	Assignment
21.9	q	2.42(s)	7'
23.3	q	1.79(t 0.7)	7
		3.31(dd 9.3,	
10 1	+	11.1)	1
46.1	ι	3.56(dd 7.4,	1
		9.3)	
50.9	d	2.62(m)	4
		3.45(dd 1.3,	
56 1	+	11.5)	C
50.4	ι	3.54(dd 3.7,	2
		11.5)	
70.6	d	4.27(m)	3
		4.73(ddd 1.2,	
11/2	+	2.1,3.0)	6
114.3	ι	5.03(dd 1.2,	0
		2.9)	
127.9	d	7.78(d 8.3)	2', 6'
130.1	d	7.32(d 8.3)	3', 5'
134.5	S	-	1'
139.9	S	-	5
143.8	S	_	4'

 Table 1. Total assignments of the ¹H and ¹³C NMR data of 3a

Supplementary materials for 3d

NMR spectra and calculations

All NMR measurements were performed on a Bruker Avance 400 spectrometer system (9.4 T) at a temperature of 298 K. The NMR spectra of ¹H NMR, ¹³C NMR, DEPT, *J*-Resolved, COSY, HMQC, HMBC, and NOESY were collected in CHCl₃-d with TMS as an internal reference. The concentration of the samples was 50 mM. For ¹H-NMR analysis, 16 transients were acquired with a 1 sec relaxation delay using 32 K data points. The 90 ° pulse was 10.0 µsec with a spectral width of 3378 Hz. ¹³C NMR and DEPT spectra were obtained for a spectral width of 20964 Hz, collecting 64 K data points. The 90 ° pulse was 10.4 µsec. Two-dimensional spectra were acquired with 2048 data points for t2 and 256 for t1 increments. All calculations were performed using MSI software (San Diego, U.S.A.) on a Silicon Graphics O2 workstation. The potentials were arranged using a consistent-valence force field and the calculation was performed for 500 ps. Among 500 calculated structures, ten structures with the lowest total energy were superimposed and used for analysis.

Result

The structures and nomenclatures of **3d** are shown in Fig. 4. The configuration of ring juncture protons can be determined based on the different distances between H3 and vinyl protons H6a/H6b. As shown in Fig. 5, while in the case of *cis* configuration, the distances of H3-H6a and H3-H6b calculated by molecular modeling are 3.82 and/or 4.53 Å, respectively, in the case of *trans*, they are 4.39 and/or 4.25 Å, respectively. The 1D NOESY slices at H6a and H6b shown in Fig. 6 give 0.3% and 0.1% nOe for H3, respectively. When the distance between H6a and H6b is considered a reference, the distances between H6a and H3, and H6b and H3 are 3.85 and 4.53 Å, respectively. These values are fit to the *cis* configuration. In order to confirm the result, the relationship between coupling constants and the Karplus equation was used. The coupling constant between H3 and H4 obtained from the *J*-resolved spectrum is 4.6 Hz. The dihedral angle determined based on the Karplus equation is 40.5° . While the angle of the *cis* isomer calculated by molecular modeling is 43.4° , the angle of the *trans* isomer is 175.7° . Therefore, the configuration of ring juncture protons is *cis*. Total assignments of the ¹H and ¹³C NMR data of **3d** are listed in Table 2.

Fig. 4. The structures and nomenclatures of $\mathbf{3d}$

Fig. 5. The structures calculated by molecular modeling. (top: *cis*, bottom: *trans*)

Fig. 6. The 1D slices of NOESY at H6a and H6b. (top : H6a, bottom : H6b)

Table 2. Total assignments of the ¹H and ¹³C NMR data of 3d

δ of ¹³ C	CHn	δ of ^{1}H	Assignment
21.9	q	2.43(s)	7'
	-	3.40(dd 9.0,	
18.0	4	11.4)	2
48.9	l	3.74(dd 9.0,	Z
		7.0)	
49.1	d	3.27(m)	4
		3.38(dd 0.6,	
560	4	11.5)	1
30.2	l	3.60(dd 4.2,	1
		11.5)	
70.9	A	4.16(dd 4.6,	2
70.8	u	7.0)	5
		5.05(t, 1.5)	
116.5	t	5.45(dd 0.7,	6
		1.5)	
126.5	d	7.29(m)	С
127.9	d	7.76(d 8.3)	2', 6'

128.6	d	7.33(m)	d
129.1	d	7.31(m)	b
130.1	d	7.35(d 8.3)	3', 5'
134.5	S	-	1'
140.9	S	-	5
143.7	S	-	а
143.9	S	-	4'

X-ray crystallographic data

Figure 7. ORTEP drawing of 3d

Table 3.	Crystal data ar	d structure	e refinement	for 3d
----------	-----------------	-------------	--------------	--------

Identification code	3d
Empirical formula	C38 H42 N2 O6 S2
Formula weight	686.86
Temperature	296(2) K
Wavelength	0.71073 Å
Crystal system	Triclinic
Space group	P-1
Unit cell dimensions	$a = 12.136(2) \text{ Å}$ $a = 65.951(12)^{\circ}.$
	$b = 12.7389(17) \text{ Å}$ $b = 81.600(14)^{\circ}.$

	c = 13.752(2) Å	g = 65.106(9)°.
Volume	1760.2(5) Å ³	-
Z	2	
Density (calculated)	1.296 Mg/m ³	
Absorption coefficient	0.200 mm ⁻¹	
F(000)	728	
Crystal size	0.44 x 0.24 x 0.22 mm ³	
Theta range for data collection	1.91 to 25.00°.	
Index ranges	-14<=h<=0, -13<=k<=12,	-16<=l<=16
Reflections collected	6251	
Independent reflections	5946 [R(int) = 0.0213]	
Completeness to theta = 25.00°	96.1 %	
Absorption correction	None	
Refinement method	Full-matrix least-squares	on F ²
Data / restraints / parameters	5946 / 0 / 560	
Goodness-of-fit on F ²	1.031	
Final R indices [I>2sigma(I)]	R1 = 0.0463, wR2 = 0.113	35
R indices (all data)	R1 = 0.0636, wR2 = 0.123	53
Extinction coefficient	0.0031(7)	
Largest diff. peak and hole	0.251 and -0.247 e.Å ⁻³	

	Х	У	Z	U(eq)	
S (1)	5990(1)	6706(1)	4644(1)	46(1)	
O(1)	5892(2)	7952(2)	4385(1)	61(1)	
O(2)	4906(2)	6484(2)	4782(1)	59(1)	
O(3)	9462(3)	4153(2)	5761(2)	86(1)	
N(1)	6764(2)	5840(2)	5758(2)	48(1)	
C(1)	6840(2)	6188(2)	3657(2)	43(1)	
C(2)	7610(2)	6737(2)	3039(2)	50(1)	
C(3)	8287(2)	6306(3)	2285(2)	54(1)	
C(4)	8222(2)	5324(2)	2129(2)	55(1)	
C(5)	7451(3)	4789(3)	2758(2)	60(1)	
C(6)	6753(2)	5206(2)	3516(2)	53(1)	
C(7)	8960(4)	4872(4)	1296(3)	80(1)	
C(8)	6964(3)	4503(3)	6259(2)	59(1)	
C(9)	7965(2)	3969(2)	7086(2)	46(1)	
C(10)	8763(2)	4678(2)	6493(2)	50(1)	
C(11)	7867(2)	5994(2)	5913(2)	50(1)	
C(12)	8637(2)	2561(2)	7557(2)	48(1)	
C(13)	8474(3)	1813(3)	7201(3)	65(1)	
C(14)	9517(2)	2037(2)	8449(2)	48(1)	
C(15)	10634(3)	1050(3)	8515(3)	68(1)	
C(16)	11449(3)	535(3)	9351(4)	85(1)	
C(17)	11177(3)	1000(4)	10128(3)	84(1)	
C(18)	10091(3)	1985(4)	10080(2)	75(1)	
C(19)	9266(3)	2501(3)	9249(2)	61(1)	
S(2)	6519(1)	6284(1)	8762(1)	51(1)	

Table 4. Atomic coordinates (x 10⁴) and equivalent isotropic displacementparameters ($Å^2x$ 10³)for **3d**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

O(4)	7666(2)	6359(2)	8432(2)	64(1)
O(5)	6445(2)	5085(2)	9194(2)	66(1)
O(6)	3654(2)	9880(2)	7169(2)	88(1)
N(2)	5615(2)	7135(2)	7724(2)	51(1)
C(20)	5941(2)	6975(2)	9704(2)	47(1)
C(21)	4998(3)	6755(3)	10346(2)	59(1)
C(22)	4507(3)	7356(3)	11037(2)	61(1)
C(23)	4941(2)	8158(2)	11127(2)	54(1)
C(24)	5890(3)	8347(3)	10495(2)	57(1)
C(25)	6391(2)	7769(2)	9784(2)	53(1)
C(26)	4397(3)	8802(3)	11894(3)	72(1)
C(27)	5617(3)	8374(3)	7005(2)	57(1)
C(28)	4331(2)	9163(2)	6567(2)	55(1)
C(29)	3812(2)	8209(2)	6719(2)	49(1)
C(30)	4365(3)	7190(3)	7785(2)	60(1)
C(31)	2445(2)	8770(2)	6583(2)	53(1)
C(32)	1729(3)	8434(3)	7367(3)	71(1)
C(33)	1943(2)	9749(3)	5515(2)	56(1)
C(34)	984(3)	10880(3)	5408(3)	87(1)
C(35)	533(4)	11801(4)	4423(4)	107(1)
C(36)	1021(4)	11620(4)	3531(4)	92(1)
C(37)	1970(3)	10518(4)	3605(3)	82(1)
C(38)	2431(3)	9593(3)	4583(3)	68(1)

S(1)-O(2)	1.4300(18)	
S(1)-O(1)	1.4334(18)	
S(1)-N(1)	1.618(2)	
S(1)-C(1)	1.758(2)	
O(3)-C(10)	1.415(4)	
N(1)-C(8)	1.475(3)	
N(1)-C(11)	1.488(3)	
C(1)-C(2)	1.385(3)	
C(1)-C(6)	1.389(3)	
C(2)-C(3)	1.373(4)	
C(3)-C(4)	1.386(4)	
C(4)-C(5)	1.382(4)	
C(4)-C(7)	1.499(4)	
C(5)-C(6)	1.379(4)	
C(8)-C(9)	1.520(4)	
C(9)-C(12)	1.509(3)	
C(9)-C(10)	1.525(3)	
C(10)-C(11)	1.503(4)	
C(12)-C(13)	1.324(4)	
C(12)-C(14)	1.485(3)	
C(14)-C(19)	1.390(4)	
C(14)-C(15)	1.392(4)	
C(15)-C(16)	1.379(5)	
C(16)-C(17)	1.360(5)	
C(17)-C(18)	1.371(5)	
C(18)-C(19)	1.382(4)	
S(2)-O(4)	1.4301(19)	
S(2)-O(5)	1.4319(19)	
S(2)-N(2)	1.616(2)	
S(2)-C(20)	1.758(2)	
O(6)-C(28)	1.408(3)	

Table 5.Bond lengths [Å] and angles [°] for3d.

N(2)-C(30)	1.480(3)
N(2)-C(27)	1.483(3)
C(20)-C(25)	1.381(4)
C(20)-C(21)	1.392(4)
C(21)-C(22)	1.374(4)
C(22)-C(23)	1.382(4)
C(23)-C(24)	1.381(4)
C(23)-C(26)	1.506(4)
C(24)-C(25)	1.381(4)
C(27)-C(28)	1.507(4)
C(28)-C(29)	1.522(4)
C(29)-C(31)	1.510(3)
C(29)-C(30)	1.513(4)
C(31)-C(32)	1.327(4)
C(31)-C(33)	1.488(4)
C(33)-C(34)	1.384(4)
C(33)-C(38)	1.385(4)
C(34)-C(35)	1.376(6)
C(35)-C(36)	1.345(6)
C(36)-C(37)	1.365(5)
C(37)-C(38)	1.373(5)
O(2)-S(1)-O(1)	119.07(11)
O(2)-S(1)-N(1)	106.72(11)
O(1)-S(1)-N(1)	106.28(11)
O(2)-S(1)-C(1)	108.33(11)
O(1)-S(1)-C(1)	107.98(11)
N(1)-S(1)-C(1)	108.02(11)
C(8)-N(1)-C(11)	110.04(19)
C(8)-N(1)-S(1)	118.85(17)
C(11)-N(1)-S(1)	119.36(16)
C(2)-C(1)-C(6)	120.2(2)
C(2)-C(1)-S(1)	120.30(19)

C(6)-C(1)-S(1)	119.48(19)
C(3)-C(2)-C(1)	119.7(2)
C(2)-C(3)-C(4)	121.4(3)
C(5)-C(4)-C(3)	117.8(2)
C(5)-C(4)-C(7)	121.4(3)
C(3)-C(4)-C(7)	120.7(3)
C(6)-C(5)-C(4)	122.1(3)
C(5)-C(6)-C(1)	118.7(3)
N(1)-C(8)-C(9)	102.4(2)
C(12)-C(9)-C(8)	116.8(2)
C(12)-C(9)-C(10)	114.4(2)
C(8)-C(9)-C(10)	101.9(2)
O(3)-C(10)-C(11)	110.5(2)
O(3)-C(10)-C(9)	108.8(2)
C(11)-C(10)-C(9)	103.8(2)
N(1)-C(11)-C(10)	104.3(2)
C(13)-C(12)-C(14)	120.7(2)
C(13)-C(12)-C(9)	122.8(3)
C(14)-C(12)-C(9)	116.5(2)
C(19)-C(14)-C(15)	117.3(3)
C(19)-C(14)-C(12)	122.0(2)
C(15)-C(14)-C(12)	120.7(3)
C(16)-C(15)-C(14)	121.4(3)
C(17)-C(16)-C(15)	120.1(3)
C(16)-C(17)-C(18)	120.0(3)
C(17)-C(18)-C(19)	120.2(3)
C(18)-C(19)-C(14)	120.9(3)
O(4)-S(2)-O(5)	119.45(12)
O(4)-S(2)-N(2)	106.55(11)
O(5)-S(2)-N(2)	106.76(11)
O(4)-S(2)-C(20)	108.41(12)
O(5)-S(2)-C(20)	107.67(12)
N(2)-S(2)-C(20)	107.46(11)

C(30)-N(2)-C(27)	109.7(2)
C(30)-N(2)-S(2)	119.95(18)
C(27)-N(2)-S(2)	119.88(17)
C(25)-C(20)-C(21)	119.9(2)
C(25)-C(20)-S(2)	120.1(2)
C(21)-C(20)-S(2)	119.9(2)
C(22)-C(21)-C(20)	119.4(3)
C(21)-C(22)-C(23)	121.6(3)
C(24)-C(23)-C(22)	118.1(3)
C(24)-C(23)-C(26)	121.1(3)
C(22)-C(23)-C(26)	120.8(3)
C(25)-C(24)-C(23)	121.6(3)
C(24)-C(25)-C(20)	119.3(3)
N(2)-C(27)-C(28)	104.9(2)
O(6)-C(28)-C(27)	110.8(3)
O(6)-C(28)-C(29)	108.3(2)
C(27)-C(28)-C(29)	104.1(2)
C(31)-C(29)-C(30)	117.5(2)
C(31)-C(29)-C(28)	113.6(2)
C(30)-C(29)-C(28)	102.9(2)
N(2)-C(30)-C(29)	101.7(2)
C(32)-C(31)-C(33)	121.8(3)
C(32)-C(31)-C(29)	122.6(3)
C(33)-C(31)-C(29)	115.6(2)
C(34)-C(33)-C(38)	116.8(3)
C(34)-C(33)-C(31)	121.2(3)
C(38)-C(33)-C(31)	121.9(2)
C(35)-C(34)-C(33)	121.5(4)
C(36)-C(35)-C(34)	120.3(4)
C(35)-C(36)-C(37)	119.8(4)
C(36)-C(37)-C(38)	120.4(4)
C(37)-C(38)-C(33)	121.1(3)

Symmetry transformations used to generate equivalent atoms:

	U11	U ²²	U33	U ²³	U13	U ¹²	
S (1)	44(1)	41(1)	43(1)	-12(1)	2(1)	-12(1)	
O(1)	73(1)	41(1)	58(1)	-17(1)	1(1)	-15(1)	
O(2)	38(1)	63(1)	62(1)	-16(1)	4(1)	-17(1)	
O(3)	78(2)	66(2)	108(2)	-38(1)	57(1)	-37(1)	
N(1)	45(1)	49(1)	41(1)	-10(1)	1(1)	-19(1)	
C(1)	41(1)	41(1)	41(1)	-11(1)	-3(1)	-15(1)	
C(2)	53(2)	49(1)	45(1)	-13(1)	0(1)	-23(1)	
C(3)	48(1)	61(2)	45(1)	-14(1)	6(1)	-22(1)	
C(4)	47(1)	57(2)	48(1)	-19(1)	-4(1)	-7(1)	
C(5)	64(2)	52(2)	69(2)	-30(1)	-2(1)	-19(1)	
C(6)	52(2)	51(2)	58(2)	-21(1)	3(1)	-24(1)	
C(7)	69(2)	86(3)	67(2)	-39(2)	4(2)	-6(2)	
C(8)	52(2)	57(2)	57(2)	0(1)	-4(1)	-29(1)	
C(9)	42(1)	45(1)	40(1)	-12(1)	4(1)	-12(1)	
C(10)	47(1)	46(1)	58(2)	-19(1)	0(1)	-19(1)	
C(11)	54(2)	48(1)	51(2)	-18(1)	-2(1)	-22(1)	
C(12)	44(1)	46(1)	50(1)	-15(1)	10(1)	-18(1)	
C(13)	70(2)	56(2)	69(2)	-23(2)	-2(2)	-25(2)	
C(14)	44(1)	38(1)	52(1)	-7(1)	2(1)	-18(1)	
C(15)	58(2)	49(2)	90(2)	-26(2)	-5(2)	-15(1)	
C(16)	60(2)	51(2)	119(3)	-10(2)	-26(2)	-10(2)	
C(17)	77(2)	80(2)	71(2)	10(2)	-23(2)	-41(2)	
C(18)	81(2)	93(2)	47(2)	-14(2)	0(2)	-42(2)	
C(19)	58(2)	62(2)	50(2)	-14(1)	7(1)	-21(1)	

Table 6. Anisotropic displacement parameters ($Å^2x \ 10^3$) for **3d**. The anisotropicdisplacement factor exponent takes the form: $-2p^2[h^2 a^{*2}U^{11} + ... + 2h k a^* b^* U^{12}]$

S(2)	46(1)	49(1)	55(1)	-22(1)	1(1)	-15(1)
O(4)	45(1)	79(1)	67(1)	-32(1)	6(1)	-21(1)
O(5)	69(1)	44(1)	76(1)	-21(1)	0(1)	-17(1)
O(6)	81(2)	69(2)	140(2)	-66(2)	29(2)	-39(1)
N(2)	51(1)	51(1)	51(1)	-19(1)	-1(1)	-22(1)
C(20)	46(1)	46(1)	45(1)	-15(1)	-1(1)	-16(1)
C(21)	65(2)	62(2)	57(2)	-20(1)	6(1)	-35(1)
C(22)	58(2)	70(2)	50(2)	-20(1)	11(1)	-29(2)
C(23)	53(2)	50(1)	44(1)	-14(1)	-8(1)	-9(1)
C(24)	58(2)	55(2)	60(2)	-24(1)	-6(1)	-21(1)
C(25)	47(1)	53(2)	58(2)	-20(1)	1(1)	-20(1)
C(26)	74(2)	71(2)	55(2)	-29(2)	-8(2)	-6(2)
C(27)	54(2)	54(2)	62(2)	-18(1)	3(1)	-26(1)
C(28)	51(2)	47(2)	63(2)	-17(1)	7(1)	-20(1)
C(29)	48(1)	49(1)	53(2)	-27(1)	4(1)	-16(1)
C(30)	58(2)	52(2)	72(2)	-15(1)	-10(1)	-29(1)
C(31)	47(1)	53(2)	66(2)	-30(1)	3(1)	-19(1)
C(32)	54(2)	79(2)	83(2)	-33(2)	11(2)	-30(2)
C(33)	43(1)	61(2)	68(2)	-30(1)	-1(1)	-19(1)
C(34)	65(2)	81(2)	89(3)	-40(2)	-4(2)	3(2)
C(35)	82(3)	73(3)	119(4)	-27(2)	-25(3)	9(2)
C(36)	82(3)	92(3)	84(3)	-6(2)	-26(2)	-38(2)
C(37)	72(2)	107(3)	68(2)	-28(2)	-1(2)	-42(2)
C(38)	55(2)	76(2)	70(2)	-30(2)	-1(2)	-20(2)

	Х	У	Z	U(eq)	
H(2)	7670(30)	7400(30)	3100(20)	80	
H(3)	8800(30)	6650(30)	1880(20)	80	
H(5)	7360(30)	4160(30)	2670(20)	80	
H(6)	6200(30)	4820(30)	3970(20)	80	
H(7A)	8770(30)	4250(30)	1190(30)	80	
H(7B)	8810(30)	5420(30)	670(30)	80	
H(7C)	9780(30)	4510(30)	1430(20)	80	
H(8A)	6270(30)	4400(30)	6580(20)	80	
H(8B)	7280(30)	4140(30)	5740(30)	80	
H(9)	7560(30)	4300(30)	7590(20)	80	
H(10)	9270(30)	4680(30)	6970(20)	80	
H(11A)	8170(30)	6390(30)	5220(30)	80	
H(11B)	7690(30)	6490(30)	6320(20)	80	
H(13A)	7940(30)	2110(30)	6610(30)	80	
H(13B)	8860(30)	930(30)	7520(20)	80	
H(15)	10800(30)	780(30)	7970(20)	80	
H(16)	12170(30)	-110(30)	9370(30)	80	
H(17)	11710(30)	650(30)	10720(30)	80	
H(19)	8540(30)	3140(30)	9280(20)	80	
H(18)	9920(30)	2270(30)	10630(30)	80	
HO3	9630(40)	4440(40)	5430(30)	80	
H(21)	4720(30)	6270(30)	10300(20)	80	
H(22)	3910(30)	7200(30)	11460(20)	80	
H(24)	6220(30)	8840(30)	10570(20)	80	
H(25)	7020(30)	7940(30)	9340(20)	80	
H(26A)	3720(30)	9550(30)	11620(20)	80	

Table 7. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³) for **3d**.

H(26B)	4230(30)	8200(30)	12540(30)	80
H(26C)	4900(30)	9040(30)	12120(30)	80
H(27A)	5840(30)	8760(30)	7390(20)	80
H(27B)	6170(30)	8260(30)	6430(30)	80
H(28)	4320(30)	9770(30)	5760(20)	80
H(29)	4140(30)	7870(30)	6200(20)	80
H(30A)	4420(30)	6340(30)	7920(20)	80
H(30B)	3850(30)	7460(30)	8440(20)	80
H(32A)	940(30)	8770(30)	7260(30)	80
H(32B)	2090(30)	7780(30)	8130(30)	80
H(34)	680(30)	10980(30)	6060(30)	80
H(35)	-30(30)	12490(30)	4470(30)	80
H(36)	730(30)	12250(30)	2900(30)	80
H(37)	2280(30)	10480(30)	2970(30)	80
H(38)	3090(30)	8820(30)	4610(20)	80
HO6	3810(30)	10460(30)	6920(30)	80

Figure 8. ORTEP drawing of 3g

Identification code	3g	
Empirical formula	C20 H23 N O3 S	
Formula weight	357.45	
Temperature	295(2) K	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	P-1	
Unit cell dimensions	a = 9.324(2) Å	$a = 81.54(2)^{\circ}$.
	b = 9.548(3) Å	b= 66.499(12)°.
	c = 11.620(3) Å	$g = 85.044(18)^{\circ}$.
Volume	938.0(4) Å ³	
Z	2	
Density (calculated)	1.266 Mg/m ³	
Absorption coefficient	0.191 mm ⁻¹	
F(000)	380	

 Table 8. Crystal data and structure refinement for 3g.

Crystal size	0.24 x 0.10 x 0.08 mm ³
Theta range for data collection	1.93 to 25.00°.
Index ranges	0<=h<=11, -11<=k<=11, -12<=l<=13
Reflections collected	3502
Independent reflections	3281 [R(int) = 0.0357]
Completeness to theta = 25.00°	99.4 %
Absorption correction	Empirical
Max. and min. transmission	0.7373 and 0.6937
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	3281 / 0 / 307
Goodness-of-fit on F ²	1.009
Final R indices [I>2sigma(I)]	R1 = 0.0576, $wR2 = 0.1046$
R indices (all data)	R1 = 0.1198, $wR2 = 0.1277$
Extinction coefficient	0.013(2)
Largest diff. peak and hole	0.168 and -0.201 e.Å ⁻³

Table 9. Atomic coordinates $(x \ 10^4)$ and equivalent isotropic displacement parameters (Å²x 10^3)

	Х	У	Z	U(eq)	
S (1)	2920(1)	2787(1)	7664(1)	52(1)	
O(1)	3409(3)	4049(3)	7930(2)	63(1)	
O(2)	3509(3)	1424(3)	8009(2)	69(1)	
O(3)	4628(3)	3627(3)	3468(3)	61(1)	
C(1)	871(4)	2779(4)	8393(3)	46(1)	
C(2)	10(5)	4023(4)	8719(4)	54(1)	
C(3)	-1608(5)	4011(5)	9266(4)	61(1)	
C(4)	-2397(5)	2781(5)	9490(3)	65(1)	
C(5)	-1518(5)	1543(5)	9177(4)	74(1)	

for **3g**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(6)	102(5)	1528(4)	8629(4)	65(1)
C(7)	-4159(5)	2771(6)	10082(4)	109(2)
N(1)	3401(3)	2960(3)	6147(3)	49(1)
C(8)	2981(4)	4318(4)	5520(3)	47(1)
C(9)	3040(4)	3899(3)	4286(3)	45(1)
C(10)	2297(4)	2436(3)	4744(3)	43(1)
C (11)	3147(5)	1751(4)	5577(4)	53(1)
C(12)	2248(6)	4974(5)	3622(5)	62(1)
C(13)	2276(4)	1605(3)	3742(3)	45(1)
C(14)	3456(5)	766(5)	3132(4)	65(1)
C(15)	857(4)	1797(3)	3440(3)	44(1)
C(16)	-639(4)	1788(4)	4376(4)	52(1)
C(17)	-1949(5)	1959(4)	4081(5)	65(1)
C(18)	-1786(6)	2129(4)	2839(6)	73(1)
C(19)	-325(6)	2137(4)	1911(5)	68(1)
C(20)	996(5)	1971(4)	2184(4)	56(1)

S(1)-O(2)	1.433(2)	
S(1)-O(1)	1.440(2)	
S(1)-N(1)	1.622(3)	
S(1)-C(1)	1.755(4)	
O(3)-C(9)	1.430(4)	
O(3)-HO3	0.78(4)	
C(1)-C(6)	1.382(5)	
C(1)-C(2)	1.387(5)	
C(2)-C(3)	1.384(5)	
C(2)-H(2)	0.86(3)	
C(3)-C(4)	1.377(5)	
C(3)-H(3)	0.95(3)	
C(4)-C(5)	1.387(6)	
C(4)-C(7)	1.507(5)	
C(5)-C(6)	1.386(6)	
C(5)-H(5)	0.95(4)	
C(6)-H(6)	0.93(4)	
C(7)-H(7A)	0.9600	
C(7)-H(7B)	0.9600	
C(7)-H(7C)	0.9600	
N(1)-C(11)	1.493(4)	
N(1)-C(8)	1.493(4)	
C(8)-C(9)	1.523(5)	
C(8)-H(8A)	1.01(3)	
C(8)-H(8B)	0.98(3)	
C(9)-C(12)	1.512(5)	
C(9)-C(10)	1.539(4)	
C(10)-C(13)	1.510(4)	
C(10)-C(11)	1.525(5)	
C(10)-H(10)	0.94(3)	
C(11)-H(11A)	0.99(3)	

Table 10.Bond lengths [Å] and angles [°] for 3g.

C(11)-H(11B)	1.00(4)
C(12)-H(12A)	0.97(4)
C(12)-H(12B)	0.98(4)
C(12)-H(12C)	0.92(4)
C(13)-C(14)	1.322(5)
C(13)-C(15)	1.489(5)
C(14)-H(14A)	0.96(4)
C(14)-H(14B)	0.97(3)
C(15)-C(16)	1.385(5)
C(15)-C(20)	1.398(5)
C(16)-C(17)	1.386(5)
C(16)-H(16)	0.97(3)
C(17)-C(18)	1.376(6)
C(17)-H(17)	0.93(3)
C(18)-C(19)	1.359(6)
C(18)-H(18)	1.01(4)
C(19)-C(20)	1.381(5)
C(19)-H(19)	0.94(4)
C(20)-H(20)	0.96(3)
O(2)-S(1)-O(1)	120.10(16)
O(2)-S(1)-N(1)	107.18(15)
O(1)-S(1)-N(1)	106.35(15)
O(2)-S(1)-C(1)	107.77(17)
O(1)-S(1)-C(1)	107.24(16)
N(1)-S(1)-C(1)	107.65(15)
С(9)-О(3)-НОЗ	114(3)
C(6)-C(1)-C(2)	119.5(4)
C(6)-C(1)-S(1)	119.9(3)
C(2)-C(1)-S(1)	120.6(3)
C(3)-C(2)-C(1)	120.1(4)
C(3)-C(2)-H(2)	123(2)
C(1)-C(2)-H(2)	117(2)

C(4)-C(3)-C(2)	121.3(4)
C(4)-C(3)-H(3)	119(2)
C(2)-C(3)-H(3)	120(2)
C(3)-C(4)-C(5)	117.8(4)
C(3)-C(4)-C(7)	121.3(4)
C(5)-C(4)-C(7)	120.9(4)
C(6)-C(5)-C(4)	121.9(4)
C(6)-C(5)-H(5)	116(3)
C(4)-C(5)-H(5)	121(2)
C(1)-C(6)-C(5)	119.3(4)
C(1)-C(6)-H(6)	120(2)
C(5)-C(6)-H(6)	121(2)
C(4)-C(7)-H(7A)	109.5
C(4)-C(7)-H(7B)	109.5
H(7A)-C(7)-H(7B)	109.5
C(4)-C(7)-H(7C)	109.5
H(7A)-C(7)-H(7C)	109.5
H(7B)-C(7)-H(7C)	109.5
C(11)-N(1)-C(8)	109.3(3)
C(11)-N(1)-S(1)	118.5(2)
C(8)-N(1)-S(1)	118.6(2)
N(1)-C(8)-C(9)	102.7(3)
N(1)-C(8)-H(8A)	109.6(18)
C(9)-C(8)-H(8A)	113.5(18)
N(1)-C(8)-H(8B)	112.3(16)
C(9)-C(8)-H(8B)	109.4(16)
H(8A)-C(8)-H(8B)	109(2)
O(3)-C(9)-C(12)	110.8(3)
O(3)-C(9)-C(8)	109.8(3)
C(12)-C(9)-C(8)	113.5(3)
O(3)-C(9)-C(10)	105.3(3)
C(12)-C(9)-C(10)	115.7(3)
C(8)-C(9)-C(10)	101.0(3)

C(13)-C(10)-C(11)	117.2(3)
C(13)-C(10)-C(9)	116.8(3)
C(11)-C(10)-C(9)	101.7(3)
C(13)-C(10)-H(10)	107.9(17)
C(11)-C(10)-H(10)	108.9(17)
C(9)-C(10)-H(10)	103.4(17)
N(1)-C(11)-C(10)	103.7(3)
N(1)-C(11)-H(11A)	108.2(18)
C(10)-C(11)-H(11A)	116.1(18)
N(1)-C(11)-H(11B)	109(2)
C(10)-C(11)-H(11B)	111(2)
H(11A)-C(11)-H(11B)	109(3)
C(9)-C(12)-H(12A)	111(2)
C(9)-C(12)-H(12B)	110(2)
H(12A)-C(12)-H(12B)	105(3)
C(9)-C(12)-H(12C)	111(2)
H(12A)-C(12)-H(12C)	113(3)
H(12B)-C(12)-H(12C)	107(3)
C(14)-C(13)-C(15)	120.6(3)
C(14)-C(13)-C(10)	122.8(3)
C(15)-C(13)-C(10)	116.6(3)
C(13)-C(14)-H(14A)	124(2)
C(13)-C(14)-H(14B)	120(2)
H(14A)-C(14)-H(14B)	116(3)
C(16)-C(15)-C(20)	117.5(3)
C(16)-C(15)-C(13)	122.0(3)
C(20)-C(15)-C(13)	120.6(3)
C(15)-C(16)-C(17)	121.4(4)
C(15)-C(16)-H(16)	119.0(18)
C(17)-C(16)-H(16)	119.6(18)
C(18)-C(17)-C(16)	120.2(4)
C(18)-C(17)-H(17)	122(2)
C(16)-C(17)-H(17)	118(2)

C(19)-C(18)-C(17)	119.1(4)
C(19)-C(18)-H(18)	125(2)
C(17)-C(18)-H(18)	116(2)
C(18)-C(19)-C(20)	121.6(5)
C(18)-C(19)-H(19)	120(2)
C(20)-C(19)-H(19)	118(2)
C(19)-C(20)-C(15)	120.3(4)
C(19)-C(20)-H(20)	123(2)
C(15)-C(20)-H(20)	117(2)

Symmetry transformations used to generate equivalent atoms:

Table 11. Anisotropic displacement parameters $(Å^2x \ 10^3)$ for **3g**. The anisotropicdisplacement factor exponent takes the form: $-2p^2[h^2 \ a^{*2}U^{11} + ... + 2hk \ a^* \ b^* \ U^{12}]$

	U11	U ²²	U33	U ²³	U13	U ¹²
S (1)	50(1)	56(1)	53(1)	-4(1)	-24(1)	-6(1)
O(1)	66(2)	70(2)	62(2)	-10(1)	-28(1)	-25(1)
O(2)	70(2)	68(2)	71(2)	0(1)	-36(2)	15(1)
O(3)	43(2)	62(2)	63(2)	-6(2)	-1(1)	-15(1)
C(1)	52(2)	41(2)	44(2)	-4(2)	-18(2)	-8(2)
C(2)	62(3)	43(2)	54(2)	-3(2)	-20(2)	-10(2)
C(3)	65(3)	63(3)	51(2)	-5(2)	-22(2)	9(2)
C(4)	53(2)	89(3)	47(2)	-3(2)	-15(2)	-11(2)
C(5)	70(3)	72(3)	76(3)	-7(2)	-19(2)	-32(3)
C(6)	68(3)	46(3)	73(3)	-13(2)	-18(2)	-8(2)
C(7)	60(3)	159(5)	92(4)	-8(3)	-13(3)	-14(3)
N(1)	52(2)	48(2)	49(2)	-5(1)	-23(1)	-2(1)
C(8)	46(2)	40(2)	54(2)	-5(2)	-18(2)	-8(2)
C(9)	34(2)	49(2)	45(2)	-4(2)	-9(2)	-4(2)
C(10)	33(2)	44(2)	45(2)	-6(2)	-8(2)	-3(2)

C(11)	60(3)	47(2)	52(2)	-7(2)	-25(2)	2(2)	
C(12)	76(3)	52(3)	56(3)	0(2)	-25(3)	-1(2)	
C(13)	41(2)	45(2)	44(2)	-7(2)	-9(2)	-6(2)	
C(14)	54(3)	78(3)	65(3)	-24(2)	-20(2)	2(2)	
C(15)	48(2)	35(2)	49(2)	-2(2)	-18(2)	-11(2)	
C(16)	50(2)	52(2)	57(3)	-5(2)	-22(2)	-9(2)	
C(17)	51(3)	56(3)	87(4)	-12(2)	-24(3)	-11(2)	
C(18)	81(4)	47(2)	113(4)	-10(2)	-62(3)	-2(2)	
C(19)	98(4)	48(2)	78(3)	-3(2)	-56(3)	-7(2)	
C(20)	59(3)	50(2)	57(3)	-10(2)	-21(2)	-7(2)	
