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The butadienyl moiety in the title compound is bound to
both cage-boron and rhenium vertices, and arises from
coupling of two alkyne molecules at the rhenium centre,
unprecedented in metallacarbaborane chemistry.

Transition-element complexes in which the cyclopentadienide
ligand [C5H5]2 functions as a 6p-electron donor have played a
pivotal role in the development of modern organometallic
chemistry.1 Formally isolobal with [C5H5]2 are the carbaborane
ligands [nido-7,8-C2B9H11]22 and [nido-7-CB10H11]32, and
their derivatives, which for over 30 years have been known
similarly to form metal complexes.2,3 These metallacarbabor-
anes, however, are far fewer in number, and this is particularly
so in the case of the latter, monocarbon carbaboranes.4 We now
report several new rhenium complexes of an amino-substituted
nido-monocarbaborane ligand which functions as an 8-electron
donor (6p electrons from the cluster open face plus 2s electrons
from the amino substituent). A facile two-alkyne coupling at the
rhenium centre is demonstrated.

Treatment of 7-NH2But-nido-7-CB10H12
5 in tetrahydrofuran

(THF) with LiBun (3 equiv.) followed by [ReBr(THF)2(CO)3]6

ostensibly gives the dilithium salt of the dianionic rhenacarba-
borane [1-NHBut-2,2,2-(CO)3-closo-2,1-ReCB10H10]22, anal-
ogous to [2,2,2-(CO)3-closo-2,1-ReCB10H11]22.7 These two
rhenacarbaboranes are oxidized by I2 to ReIII species: the latter
forms a monoanionic tricarbonyl-iodo complex,7 whereas the
former gives neutral [1,2-m-NHBut-2,2,2-(CO)3-closo-
2,1-ReCB10H10] 1 (Scheme 1).† In 1 the NHBut group
completes the metal coordination sphere by bridging between
the cage-carbon atom and the rhenium vertex, as seen in the
previously reported—and formally isoelectronic—anionic
molybdenum and tungsten complexes.8

When compound 1 in CH2Cl2 is treated at room temperature
for 12 h with one equiv. each of ButC·CH and Me3NO, one CO
is replaced by the alkyne affording [1,2-m-NHBut-2-ButC·CH-
2,2-(CO)2-closo-2,1-ReCB10H10] 2.† However, this is not the
only product. Column chromatography on silica gel of the
product mixture gave, in addition, small amounts of a
trimethylamine complex [1,2-m-NHBut-2,2-(CO)2-2-NMe3-
closo-2,1-ReCB10H10] 3† plus a third species which is formed
in greatest proportion and is of most interest. This complex,
[1,2-m-NHBut-2,2-(CO)2-3,2-s:h2-{C(NCHBut)–CHNCHBut}-
closo-2,1-ReCB10H9] 4,† contains a dienyl moiety that is bound
to both the rhenium centre and to a boron vertex ligating the
metal.

Under conditions similar to those by which it is formed,
compound 2 does not by itself react with donors such as NEt3 or
PPh3, and 3 is likewise unreactive towards ButC·CH. It may
therefore be concluded that 2 and 3 are formed competitively
from 1 following initial CO removal by Me3NO. However,
treatment of compound 2 with Me3NO and one further
equivalent of the alkyne affords 4 as the only observed product.
All the compounds 1–4 show a broad 13C{1H} NMR resonance
at d ca. 103, diagnostic8 of the cage-carbon atom involved in a
Ccage–{m-NHBut}–Re linkage. The asymmetry implied by their
11B{1H} NMR spectra is further consistent with this. In the
NMR spectra of 4 the appearance of signals attributable to three
But groups, allied with observation of multiple 1H–1H cou-

plings, was suggestive of incorporation and linking of two
alkynes. However, the additional attachment of the organic
function to a cluster boron atom and the exact nature of this
function were only confirmed by X-ray diffraction analysis.‡

The structure determined is shown in Fig. 1. A substituted
1,3-dien-2-yl moiety is coordinated to the rhenium vertex [Re–
C(8) 2.316(7), Re–C(9) 2.445(7) Å] and is also bonded to an a
boron atom in the CBBBB belt that h5-ligates the rhenium
[B(2)–C(14) 1.587(10) Å]. The bond lengths within the diene
suggest little conjugation, consistent with the two double bonds
being almost orthogonal [f(C(9)C(8)C(14)C(15)) 70.9(10)°],
although—as noted above—in solution NMR spectra some
such communication is evidenced by the observed long range
1H–1H coupling.

Mechanistically, it is reasonably assumed that formation of 4
in the principal reaction proceeds by first conversion of 2 to a
bis(alkyne) species (Scheme 1, A) from which—either subse-

Scheme 1 Reagents and conditions: i, BunLi (3 equiv.), THF; ii,
[ReBr(THF)2(CO)3], THF; iii, I2, THF; iv, Me3NO, ButC·CH, CH2Cl2; v,
2 with Me3NO, ButC·CH, CH2Cl2; vi, CO scavenging. Key: (2 = BH,
Ù = B, 5 = C.
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quently or concomitantly—one of the alkynes rearranges to a
vinylidene9 intermediate. The latter, in turn, inserts into an
adjacent B–H bond, resulting in the Re-alkyne/Re,B-vinyl
species B. Rearrangement of the remaining alkyne in B then
affords a vinylidene which inserts into the nearby C–H bond at
the boron-bound terminus of the B–C(H)NC(H)But group,
giving 4. This is consistent with the observed regio- and
geometric specificity of the ‘tail-to-tail’ alkyne coupling. The
present results contrast with previous observations in the related
metalladicarbaborane systems based on {MoC2B9}10 and
{RuC2B9}11 clusters, where multiple alkyne substitution results
in mixed Mo-alkyne/Mo,B-vinyl or multiple cage-B-vinyl-
substituted products, respectively, without diene formation.
Moreover, in an allied iron–monocarbaborane complex only a
single alkyne molecule is incorporated and converted to a s:h2-
vinyl species, even with excess of this reagent.12 Further
investigations of the mechanism of formation of 4 and of its
reactivity are at present under way.

We thank the Robert A. Welch Foundation for support (Grant
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Notes and references
† 1: Orange microcrystals; yield 46%. Anal. Calc. for C8H20B10NO3Re:
C, 20.3; H, 4.3; N, 3.0. Found: C, 20.5; H, 4.3; N, 3.0%; IR (CH2Cl2):
nmax(CO) 2088s, 2040m, 2001s cm21; 1H NMR (360.13 MHz, CD2Cl2), d

3.87 (br s, 1H, NH), 1.26 (s, 9H, But); 13C{1H} NMR (90.56 MHz, CD2Cl2),
d 191.5, 190.8, 189.1 (CO 3 3), 103.5 (br, cage C), 65.0 (CMe3), 29.1
(CMe3); 11B{1H} NMR (115.55 MHz, CD2Cl2, unit integral except where
indicated), d 18.9, 3.2, 0.8, 23.4, 26.6 (3B), 27.6, 215.3, 219.3.

2: Yellow microcrystals; yield 13%. Anal. Calc. for C13H30B10NO2Re:
C, 29.6; H, 5.7; N, 2.7. Found: C, 29.8; H, 5.8; N, 2.6%; IR: nmax(CO)
2077s, 2020s cm21; 1H NMR, d 7.42 (s, 1H, ·CH), 1.69 (s, 9H, But), 1.00
(s, 9H, But), NH too broad to be observed; 13C{1H} NMR, d 195.5 (CO),
182.2 (·CH), 117.0 (·CBut), 104.2 (br, cage C), 61.4 (NCMe3), 36.5
(CCMe3), 32.0 (CMe3), 28.9 (CMe3); 11B{1H} NMR, d 14.7, 2.0, 23.4,
25.1, 25.9, 28.3, 29.6, 210.1, 213.8, 219.9.

3: Brown microcrystals; yield 9%. Anal. Calc. for C10H29B10N2O2Re: C,
23.8; H, 5.8; N, 5.6. Found: C, 23.8; H, 5.8; N, 5.3%; IR: nmax(CO) 2028s,
1939s cm21; 1H NMR, d 3.24 (s, 9H, NMe3), 3.12 (br s, 1H, NH), 1.25 (s,
9H, But); 13C{1H} NMR, d 206.7, 204.7 (CO 3 2), 102.8 (br, cage C), 63.5
(CMe3), 61.1 (NMe3), 29.5 (CMe3); 11B{1H} NMR, d 12.4, 3.7, 20.3,
21.9, 23.7, 29.0, 210.6, 212.1, 214.1, 219.1.

4: Orange microcrystals; yield 23% (unoptimised). Anal. Calc. for
C19H40B10NO2Re: C, 37.5; H, 6.6; N, 2.3. Found: C, 37.5; H, 6.7; N, 2.3%;
IR: nmax(CO) 2045s, 1978s cm21; 1H NMR, d 5.77 (br, 1H, B–CNCH), 4.71
[dd, 3J(HH) = 15, 4J(HH) = 2, 1H, Re–(CHNCHBut)], 4.53 [d, 3J(HH) =
15, 1H, Re–CHBut], 2.79 (br s, 1H, NH), 1.42 (s, 9H, Re–CHBut), 1.22 (s,
9H, NBut), 1.14 (s, 9H, B–CNCBut); 13C{1H} NMR, d 200.2, 194.8 (CO 3
2), 163.5 (B–CNC), 127.8 (v br, B–C), 104.3 (Re–CBut), 103.6 (br, cage C),
64.8 (NCMe3), 56.2 [Re–(CHNCHBut)], 36.1, 34.3 (CCMe33 2), 32.6 (Re–
CCMe3), 31.1 (B–CNCCMe3), 29.3 (NCMe3); 11B{1H} NMR, d 14.3, 3.8,
21.8, 22.8, 26.4, 27.3, ca. 29.2 [sh, B(3)] 29.7, 218.6, 219.1.
‡ Crystal data for 4: Enraf-Nonius CAD-4 diffractometer, graphite-
monochromated Mo-Ka X-radiation (l = 0.71073 Å); Lorentz, polariza-
tion and empirical absorption corrections; solution by direct methods and
full-matrix least-squares refinement on F2 (SHELXL97); crystals from
CH2Cl2–light petroleum (bp 40–60 °C) (230 °C); C19H40B10NO2Re, M =
608.82, monoclinic, space group P21/n, a = 11.440(2), b = 15.369(2), c =
15.377(2) Å, b = 92.828(12)°, U = 2700.2(7) Å3, T = 293 K, Z = 4,
m(MoKa) = 4.517 mm21, 5032 reflections measured, 4777 unique (Rint =
0.0256) were used in all calculations. Final wR2 (F2) = 0.0808 (all data), R1

[F > 4s(F)] = 0.0393. CCDC reference number 181735. See http://
www.rsc.org/suppdata/cc/b2/b201772p/ crystallographic data in CIF or
other electronic format.
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Fig. 1 Molecular structure of 4 with crystallographic labeling scheme
(thermal ellipsoids with 40% probability). Selected distances (Å) and angles
(°): Re–C(1) 2.145(7), Re–N 2.244(6), Re–C(8) 2.316(7), Re–B(2)
2.352(8), Re–C(9) 2.445(7), C(1)–N 1.422(8), B(2)–C(14) 1.587(10), C(8)–
C(9) 1.383(9), C(8)–C(14) 1.508(9), C(14)–C(15) 1.331(9); C(1)–Re–C(8)
99.7(2), N–Re–C(8) 87.4(2), C(1)–Re–C(9) 113.2(2), N–Re–C(9) 83.3(2),
C(8)–Re–C(9) 33.6(2), N–C(1)–B(2) 103.6(5), C(1)–N–Re 67.4(4), C(9)–
C(8)–C(14) 128.0(6), C(9)–C(8)–Re 78.3(4), C(14)–C(8)–Re 94.6(4),
C(8)–C(9)–Re 68.1(4), C(15)–C(14)–C(8) 119.6(6), C(15)–C(14)–B(2)
137.6(6), C(8)–C(14)–B(2) 102.7(6).
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