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A remarkable stereoselective reaction of methylglyoxal with
2-aminopyridine, the nucleic base adenine and adenine
nucleosides leads in good yield to heterocycles of a new
family in water under mild conditions and should be of
interest in the understanding of the biological effects of
methylglyoxal which is toxic, mutagenic and involved in
diabetic complications.

Methylglyoxal (MG) 1 (pyruvic aldehyde, 2-oxopropanal,
Scheme 1) is an interesting bifunctional reagent in organic
synthesis. For instance, self-condensation1a or condensation
with other aldehydes1b by a C–C bond leads to dicarbonyl
intermediates interesting in synthesis and MG can be used in the
preparation of various heterocycles.2

MG can be formed in vivo by slow glucose degradation under
physiological conditions3 and it appears to be involved in the
development of diabetic complications, in mutagenesis and
apoptosis.3,4 Recently, it was reported that MG may function as
a signal molecule during the regulation of cell death.4c

Reactions with cysteine, lysine and arginine residues in
proteins3,4 and with guanine in DNA and RNA have been
reported.4,5 Very little has been published on the reaction with
the nucleic base adenine4a,6a however formation of cyclic6a or
acyclic6b monoadducts with 2-aminopyridine has been de-
scribed under different conditions. On the basis of these results,
a reaction of glyoxal or MG with adenine derivatives at 100 °C
in propan-2-ol containing HCl or tungstosilicic acid has been
reported to detect DNA.6a Treatment of the uncharacterized
products induces chemiluminescence.

We report here a new stereoselective reaction of MG with
2-aminopyridine (AP), adenine and adenine nucleosides that
occurs in water under mild conditions and leads in good yields
to heterocycles of a new family.

The reaction of MG with AP was first investigated under
argon at 50 °C using the commercial 40% acidic aqueous
solution containing different impurities (pH 5, 0.75 M AP, 8
equiv. MG). After 12 h, the reaction of AP was complete and led
essentially to two compounds absorbing in the UV region
detected by TLC and HPLC and purified by chromatography.
Their 1H, 13C NMR and mass spectra revealed isomeric
structures corresponding to the addition of two MG molecules
on the aromatic ring. X-Ray study of crystals of each isomer
showed the formation of a six membered ring incorporating the
nitrogen atoms N1 and N2 of AP (Fig. 1, Scheme 2). This ring

results from condensation of two MG molecules by a C–C bond
leading to the isomers 37 and 48 detected in a 60+40 ratio and
isolated after further chromatography and crystallisation re-
spectively in 32 and 26% yields. Surprisingly, the new ring
bears a carboxylate group, two methyl groups and two hydroxy
functions located on three successive asymmetric carbon atoms.
In both isomers, the methyl groups are trans. The adjacent
hydroxy functions are cis in the major isomer 3 and trans in the
minor isomer 4 (X-ray studies revealed the presence of racemic
mixtures).

The reaction conducted at pH 8 or 4 (acidification with acetic
or sulfuric acid) with a dilute aqueous solution of MG freshly
prepared9 gave the same products (HPLC, NMR and mass
spectra). The same reaction also occurs at 30 °C but more
slowly than at 50 °C.

Scheme 1 Structures of methylglyoxal and adenine.

Fig. 1 ORTEP views of X-ray structures of the methylglyoxal-2-aminopyr-
idine adducts 3 (major) and 4 (minor).

Scheme 2 Structures of the methylglyoxal adducts formed from 2-amino-
pyridine, adenine, adenosine and 2A-deoxyadenosine.
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The reaction was conducted with adenine 2 and an aqueous
commercial solution of MG under argon at 50 °C (pH 4, 0.82 M
adenine, 7 equiv. MG). After complete reaction (18 h), two
compounds absorbing in the UV were detected and isolated in
a 70+30 ratio after chromatography in 46 and 20% yields,
respectively. The X-ray structure of the major product was
obtained and confirmed the expected structure 510 correspond-
ing to the major AP adduct 3 (Fig. 2, Scheme 2). The minor
product could not be crystallized but its characteristics indicate
clearly the structure 6 related to that of the corresponding minor
AP isomer (Scheme 2). The same reaction was observed with a
dilute aqueous solution of MG freshly prepared, at pH 4
(addition of aqueous H2SO4) or under neutral conditions.

The reaction was performed at pH 4 with adenosine or 2A-
deoxyadenosine and the commercial concentrated solution of
MG. For each nucleoside, two isomers were selectively formed
and isolated. They were characterised as compounds 7 and 9
(major adducts: 47 and 20% yields) and 8 and 10 (minor
adducts: 8 and 7% yields), respectively, by comparison of their
spectral characteristics with those of the corresponding AP and
adenine adducts (Scheme 2). The low yields obtained in minor
adducts can be explained by difficulties in the purification
procedure. Analysis of the 1H and 13C NMR spectra of the
nucleoside adducts showed the splitting of some peaks in two
signals of equal intensity that indicates the presence of the two
expected diastereoisomers which were not separated. The
selective formation of adenosine and 2A-deoxyadenosine ad-
ducts was also observed by HPLC and 1H NMR when the
reaction was conducted at 37 °C and pH 7 with a freshly
prepared diluted aqueous solution of MG (40 mM nucleoside, 8
fold excess of MG, phosphate buffer). Formation of similar
adducts was observed with 9-propyladenine and the cytosine
base (1H, 13C NMR, LRMS for each purified adduct) and with
polyA.11

In conclusion, a new stereoselective reaction of methyl-
glyoxal with 2-aminopyridine and adenine derivatives was
evidenced in water under mild conditions. This reaction which
leads to heterocycles of a new family in good yield should
present interest in organic synthesis and by its mechanism
which remains to be elucidated. The condensation of two MG
molecules by a C–C bond to form a new ring is also remarkable
by its stereoselectivity in regard to the number of reactive
sites.

The reactions with adenine nucleosides, polyA and cytosine
evidenced under physiological conditions show the capability
of MG to react with different bases than guanine and in a
different way to that previously described.4,5,6a These reactions
should be interesting in the understanding of some of the
biological effects of methylglyoxal. The new imino acid
adenine derivatives 5 and 6 possess interesting catalytic activity
in the model hydrolysis of p-nitrophenylacetate12 and could
have been intermediates in prebiotic chemistry.13
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Fig. 2 ORTEP view of the X-ray structure of the major methylglyoxal-
adenine adduct 5.
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